下列結(jié)論:①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②當x∈(1,+∞)時,函數(shù)y=x
1
2
,y=x2
的圖象都在直線y=x的上方;
③定義在R上的奇函數(shù)f(x),滿足f(x+2)=-f(x),則f(6)的值為0.
④若函數(shù)f(x)=mx2-2x在區(qū)間(2+∞)內(nèi)是增函數(shù),則實數(shù)m的取值范圍為m ≥ 
1
2

其中,正確結(jié)論的個數(shù)是(  )
A.1B.2C.3D.4
命題①“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”,是錯誤的因為否定形式只是對結(jié)論否定.
命題②當x∈(1,+∞)時,函數(shù)y=x
1
2
,y=x2
的圖象都在直線y=x的上方,根據(jù)圖象的關(guān)系顯然正確.
命題③定義在R上的奇函數(shù)f(x),滿足f(x+2)=-f(x),則f(6)的值為0.
因為f(6)=-f(4)=f(2)=-f(0),又因為奇函數(shù)在原點的值為0,所以成立.
命題④拋物線在(2+∞)內(nèi)是增函數(shù),則開口向上所以m大于0,且對稱軸小于等于2,-
a
2a
=
1
m
≤2
,即得m的取值范所以命題正確.
故答案選擇C.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知命題p:?x∈R,使sinx=
5
2
;命題q:?x∈R,都有x2+x+1>0.給出下列結(jié)論:
①命題“p∧q”是真命題;
②命題“p∧¬q”是假命題;
③命題“¬p∨q”是真命題;
④命題“¬p∨¬q”是假命題.
其中正確的是( 。
A、②③B、②④C、③④D、①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題R,p:?x∈R使sinx=
5
2
,命題q:?x∈R都有x2+x+1>0,給出下列結(jié)論:
①命題“p∧q”是真命題
②命題“
4x2
49
+
y2
6
=1
”是假命題
③命題“?p∨q”是真命題
④命題“?p∨?q”是假命題
其中正確的是( 。
A、②④B、②③C、③④D、①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x∈R,使tanx=1,命題q:x2-3x+2<0的解集是{x|1<x<2},下列結(jié)論:
①命題“p∧q”是真命題;
②命題“p∧¬q”是假命題;
③命題“¬p∨q”是真命題;
④命題“¬p∨¬q”是假命題.
其中正確的是
①②③④
①②③④
(填序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•孝感模擬)已知命題p:?x∈R,使sinx=
5
2
;命題q:?x∈R,都有x2+x+1>0.下列結(jié)論:
①命題“p∧q”是真命題
②命題“¬p∨q”是真命題
③命題“¬p∨¬q”是假命題
④命題“p∧¬q”是假命題
其中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x∈R,使tanx=1,命題q:x2-3x+2<0的解集是{x|1<x<2},下列結(jié)論:
①命題“p∧q”是真命題;    
②命題“p∧?q”是假命題;
③命題“?p∨q”是真命題;   
④命題“?p∨?q”是假命題.
其中正確的是
①②③④
①②③④

查看答案和解析>>

同步練習冊答案