【題目】f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,則不等式f(x)g(x)<0的解集是(
A.(﹣∞,﹣3)∪(0,3)
B.(﹣∞,﹣3)∪(3,+∞)
C.(﹣3,0)∪(3,+∞)
D.(﹣3,0)∪(0,3)

【答案】A
【解析】解:令h(x)=f(x)g(x),則h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g(x)=﹣h(x),因此函數(shù)h(x)在R上是奇函數(shù). ①∵當(dāng)x<0時(shí),h′(x)=f′(x)g(x)+f(x)g′(x)>0,∴h(x)在x<0時(shí)單調(diào)遞增,
故函數(shù)h(x)在R上單調(diào)遞增.
∵h(yuǎn)(﹣3)=f(﹣3)g(﹣3)=0,
∴h(x)=f(x)g(x)<0=h(﹣3),
∴x<﹣3.
②當(dāng)x>0時(shí),函數(shù)h(x)在R上是奇函數(shù),可知:h(x)在(0,+∞)上單調(diào)遞增,且h(3)=﹣h(﹣3)=0,
∴h(x)<0,的解集為(0,3).
∴不等式f(x)g(x)<0的解集是(﹣∞,﹣3)∪(0,3).
故選:A
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)奇偶性的性質(zhì)(在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇),還要掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的不等式ax2+bx+c<0的解集為({﹣∞,﹣1})∪( ,+∞),則不等式cx2﹣bx+a<0的解集為(
A.(﹣1,2)
B.(﹣∞,﹣1)∪(2,+∞)
C.(﹣2,1)
D.(﹣∞,﹣2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若正實(shí)數(shù)a,b滿足a+b=1,則(
A. 有最大值4
B.ab有最小值
C. 有最大值
D.a2+b2有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}是公比不為1的等比數(shù)列,a1=1,且a1 , a3 , a2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng);
(2)若數(shù)列{an}的前n項(xiàng)和為Sn , 試求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)= 恰有2個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)為R上的偶函數(shù),g(x)為R上的奇函數(shù),且f(x)+g(x)=log4(4x+1).
(1)求f(x),g(x)的解析式;
(2)若函數(shù)h(x)=f(x)﹣ 在R上只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(﹣∞,0)上單調(diào)遞減,若實(shí)數(shù)a滿足f(3|2a+1|)>f(﹣ ),則a的取值范圍是(
A.(﹣∞,﹣ )∪(﹣ ,+∞)
B.(﹣∞,﹣
C.(﹣ ,+∞)
D.(﹣ ,﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°
(1)若PA=AB,求PB與平面PDC所成角的正弦值;
(2)當(dāng)平面PBC與平面PDC垂直時(shí),求PA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,﹣ <φ< ,x∈R)的部分圖象如圖所示.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)將函數(shù)y=f(x)的圖象沿x軸方向向右平移 個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短到原來(lái)的 (縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,當(dāng)x∈[﹣ , ]時(shí),求函數(shù)g(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案