求數(shù)列0.18,0.00 18,…的前n項(xiàng)和及各項(xiàng)和。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
數(shù)學(xué)成績 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
物理成績 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
數(shù)學(xué)成績優(yōu)秀 | 數(shù)學(xué)成績不優(yōu)秀 | 合計(jì) | |
物理成績優(yōu)秀 | |||
物理成績不優(yōu)秀 | |||
合計(jì) | 20 |
y1 | y2 | 合計(jì) | |
x1 | a | b | a+b |
x2 | c | d | c+d |
合計(jì) | a+c | b+d | a+b+c+d |
n(ad-bc)2 |
(a+b)(c+d)(a+c)(b+d) |
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
A已知數(shù)列{an}是首項(xiàng)為,公比q=的等比數(shù)列,設(shè),數(shù)列{cn}滿足cn=an•bn.
(1)求證:{bn}是等差數(shù)列;
(2)求數(shù)列{cn}的前n項(xiàng)和Sn;
(3)若對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.
B已知數(shù)列{an}和{bn}滿足:a1=λ,,,其中λ為實(shí)數(shù),n為正整數(shù).
(Ⅰ)對(duì)任意實(shí)數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(Ⅱ)證明:當(dāng)λ≠-18時(shí),數(shù)列{bn}是等比數(shù)列;
(Ⅲ)設(shè)0<a<b(a,b為實(shí)常數(shù)),Sn為數(shù)列{bn}的前n項(xiàng)和.是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省六安市舒城中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com