【題目】

1)討論的單調(diào)性;

2)若對(duì)任意,關(guān)于的不等式在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.

【答案】1)見解析(2

【解析】

1)求導(dǎo)得,再分成、、四種情況,結(jié)合導(dǎo)數(shù)的符號(hào)得出函數(shù)的單調(diào)性;

2)設(shè),,得單調(diào)性,則,由(1)可得,則,令,求導(dǎo),令, ,根據(jù)導(dǎo)數(shù)可得出函數(shù)的單調(diào)性與最值,由此可以求出答案.

解:(1,

①當(dāng)時(shí),令,令,則

上單調(diào)遞減,在單調(diào)遞增;

②當(dāng)時(shí),,令,則,令,則,

上單調(diào)遞增,在上單調(diào)遞減;

③當(dāng)時(shí),上單調(diào)遞增;

④當(dāng)時(shí),令,令,

上單調(diào)遞增,在上單調(diào)遞減;

2)當(dāng)時(shí),,設(shè),

上遞增,

,

由(1)知上遞減,在上遞增,

,∴,

,則

,

當(dāng)時(shí),,故上遞減,

,∴,∴上遞增,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】泉州是全國休閑食品重要的生產(chǎn)基地,食品產(chǎn)業(yè)是其特色產(chǎn)業(yè)之一,其糖果產(chǎn)量占全國的20%.現(xiàn)擁有中國馳名商標(biāo)17件及“全國食品工業(yè)強(qiáng)縣”2個(gè)(晉江惠安)等榮譽(yù)稱號(hào),涌現(xiàn)出達(dá)利盼盼友臣金冠雅客安記回頭客等一大批龍頭企業(yè).已知泉州某食品廠需要定期購買食品配料,該廠每天需要食品配料200千克,配料的價(jià)格為1元/千克,每次購買配料需支付運(yùn)費(fèi)90元.設(shè)該廠每隔天購買一次配料.公司每次購買配料均需支付保管費(fèi)用,其標(biāo)準(zhǔn)如下:6天以內(nèi)(含6天),均按10元/天支付;超出6天,除支付前6天保管費(fèi)用外,還需支付剩余配料保管費(fèi)用,剩余配料按元/千克一次性支付.

(1)當(dāng)時(shí),求該廠用于配料的保管費(fèi)用元;

(2)求該廠配料的總費(fèi)用(元)關(guān)于的函數(shù)關(guān)系式,根據(jù)平均每天支付的費(fèi)用,請(qǐng)你給出合理建議,每隔多少天購買一次配料較好.

附:單調(diào)遞減,在單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是數(shù)列的前n項(xiàng)和,,且

(1)求數(shù)列的通項(xiàng)公式;

(2)對(duì)于正整數(shù),已知成等差數(shù)列,求正整數(shù)的值;

(3)設(shè)數(shù)列n項(xiàng)和是,且滿足:對(duì)任意的正整數(shù)n,都有等式成立.求滿足等式的所有正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】5G網(wǎng)絡(luò)是第五代移動(dòng)通信網(wǎng)絡(luò),其峰值理論傳輸速度可達(dá)每81GB,比4G網(wǎng)絡(luò)的傳輸速度快數(shù)百倍.舉例來說,一部1G的電影可在8秒之內(nèi)下載完成.隨著5G技術(shù)的誕生,用智能終端分享3D電影、游戲以及超高畫質(zhì)(UHD)節(jié)目的時(shí)代正向我們走來.某手機(jī)網(wǎng)絡(luò)研發(fā)公司成立一個(gè)專業(yè)技術(shù)研發(fā)團(tuán)隊(duì)解決各種技術(shù)問題,其中有數(shù)學(xué)專業(yè)畢業(yè),物理專業(yè)畢業(yè),其它專業(yè)畢業(yè)的各類研發(fā)人員共計(jì)1200人.現(xiàn)在公司為提高研發(fā)水平,采用分層抽樣抽取400人按分?jǐn)?shù)對(duì)工作成績進(jìn)行考核,并整理得如上頻率分布直方圖(每組的頻率視為概率).

1)從總體的1200名學(xué)生中隨機(jī)抽取1人,估計(jì)其分?jǐn)?shù)小于50的概率;

2)研發(fā)公司決定對(duì)達(dá)到某分?jǐn)?shù)以上的研發(fā)人員進(jìn)行獎(jiǎng)勵(lì),要求獎(jiǎng)勵(lì)研發(fā)人員的人數(shù)達(dá)到30%,請(qǐng)你估計(jì)這個(gè)分?jǐn)?shù)的值;

3)已知樣本中有三分之二的數(shù)學(xué)專業(yè)畢業(yè)的研發(fā)人員分?jǐn)?shù)不低于70分,樣本中不低于70分的數(shù)學(xué)專業(yè)畢業(yè)的研發(fā)人員人數(shù)與物理及其它專業(yè)畢業(yè)的研發(fā)人員的人數(shù)和相等,估計(jì)總體中數(shù)學(xué)專業(yè)畢業(yè)的研發(fā)人員的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,共享單車已經(jīng)悄然進(jìn)入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務(wù)民眾,某共享單車公司在其官方中設(shè)置了用戶評(píng)價(jià)反饋系統(tǒng),以了解用戶對(duì)車輛狀況和優(yōu)惠活動(dòng)的評(píng)價(jià).現(xiàn)從評(píng)價(jià)系統(tǒng)中選出條較為詳細(xì)的評(píng)價(jià)信息進(jìn)行統(tǒng)計(jì),車輛狀況的優(yōu)惠活動(dòng)評(píng)價(jià)的列聯(lián)表如下:

對(duì)優(yōu)惠活動(dòng)好評(píng)

對(duì)優(yōu)惠活動(dòng)不滿意

合計(jì)

對(duì)車輛狀況好評(píng)

對(duì)車輛狀況不滿意

合計(jì)

(1)能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為優(yōu)惠活動(dòng)好評(píng)與車輛狀況好評(píng)之間有關(guān)系?

(2)為了回饋用戶,公司通過向用戶隨機(jī)派送騎行券.用戶可以將騎行券用于騎行付費(fèi),也可以通過轉(zhuǎn)贈(zèng)給友.某用戶共獲得了張騎行券,其中只有張是一元券.現(xiàn)該用戶從這張騎行券中隨機(jī)選取張轉(zhuǎn)贈(zèng)給好友,求選取的張中至少有張是一元券的概率.

參考數(shù)據(jù):

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,天津之眼,全稱天津永樂橋摩天輪,是世界上唯一一個(gè)橋上瞰景摩天輪,是天津的地標(biāo)之一 .永樂橋分上下兩層,上層橋面預(yù)留了一個(gè)長方形開口,供摩天輪輪盤穿過,摩天輪的直徑為110米,外掛裝48個(gè)透明座艙,在電力的驅(qū)動(dòng)下逆時(shí)針勻速旋轉(zhuǎn),轉(zhuǎn)一圈大約需要30分鐘.現(xiàn)將某一個(gè)透明座艙視為摩天輪上的一個(gè)點(diǎn),當(dāng)點(diǎn)到達(dá)最高點(diǎn)時(shí),距離下層橋面的高度為113米,點(diǎn)在最低點(diǎn)處開始計(jì)時(shí).

1)試確定在時(shí)刻 (單位:分鐘)時(shí)點(diǎn)距離下層橋面的高度 (單位:);

2)若轉(zhuǎn)動(dòng)一周內(nèi)某一個(gè)摩天輪透明座艙在上下兩層橋面之間的運(yùn)行時(shí)間大約為5分鐘,問上層橋面距離下層橋面的高度約為多少米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為某兒童游樂場一個(gè)小型摩天輪示意圖,該摩天輪近似看作半徑為的圓,圓上最低點(diǎn)A與地面距離為,摩天輪每60秒勻速轉(zhuǎn)動(dòng)一圈,摩天輪上某點(diǎn)B的起始位置在最低點(diǎn)A.圖中與地面垂直,以為始邊,逆時(shí)針轉(zhuǎn)動(dòng)角到,設(shè)B點(diǎn)與地面間的距離為.

(1)求h間關(guān)系的函數(shù)解析式;

(2)設(shè)從開始轉(zhuǎn)動(dòng),經(jīng)過t秒后到達(dá),求ht之間的函數(shù)關(guān)系式;

(3)如果離地面高度不低于才能獲得最佳觀景效果,在摩天輪轉(zhuǎn)動(dòng)的一圈內(nèi),有多長時(shí)間B點(diǎn)在最佳觀景效果高度?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正方體中,點(diǎn)P在線段上運(yùn)動(dòng),給出以下四個(gè)命題:

①異面直線所成的角為定值;

②二面角的大小為定值;

③三棱錐的體積為定值;

其中真命題的個(gè)數(shù)為(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BCAC=BC=,O,M分別為AB,VA的中點(diǎn).

1)求證:VB∥平面MOC;

2)求證:平面MOC⊥平面VAB

3)求三棱錐V﹣ABC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案