【題目】如圖,在三棱柱中,平面平面,.
(1)證明:;
(2)若是正三角形,,求二面角的大小.
【答案】(1)見(jiàn)解析(2)
【解析】試題分析:(1)要證線(xiàn)線(xiàn)垂直,可以從線(xiàn)面垂直入手,證得AC⊥平面A1B1C,進(jìn)而得到AC⊥;(2)利用空間坐標(biāo)系的方法,求得兩個(gè)面的法向量,通過(guò)向量的夾角的計(jì)算得到二面角的大小.
解析:
(Ⅰ)過(guò)點(diǎn)B1作A1C的垂線(xiàn),垂足為O,
由平面A1B1C⊥平面AA1C1C,平面A1B1C∩平面AA1C1C=A1C,
得B1O⊥平面AA1C1C,
又AC平面AA1C1C,得B1O⊥AC.
由∠BAC=90°,AB∥A1B1,得A1B1⊥AC.
又B1O∩A1B1=B1,得AC⊥平面A1B1C.
又CA1平面A1B1C,得AC⊥CA1.
(Ⅱ)以C為坐標(biāo)原點(diǎn),的方向?yàn)?/span>x軸正方向,||為單位長(zhǎng),建立空間直角坐標(biāo)系C-xyz.
由已知可得A(1,0,0),A1(0,2,0),B1(0,1,).
所以=(1,0,0),=(-1,2,0),==(0,-1,).
設(shè)n=(x,y,z)是平面A1AB的法向量,則
即
可取n=(2,,1).
設(shè)m=(x,y,z)是平面ABC的法向量,則
即
可取m=(0,,1).
則cosn,m==.
又因?yàn)槎娼?/span>A1-AB-C為銳二面角,
所以二面角A1-AB-C的大小為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生平均每天課外體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
將學(xué)生日均課外體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的列聯(lián)表;
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
(2)通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
參考格式:,其中
0.025 | 0.15 | 0.10 | 0.005 | 0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 2.072 | 6.635 | 7.879 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面平面,,,為的中點(diǎn),為上一點(diǎn),交于點(diǎn).
(1)證明:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,以為頂點(diǎn)的六面體中,和均為等邊三角形,,且平面平面,平面,是的中點(diǎn),連接.
(Ⅰ)求證:;
(Ⅱ)求證:平面;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中,
側(cè)棱平面,為等腰直角三角形,,且,分別是的中點(diǎn).
(Ⅰ)求證:①平面;
②平面;
(Ⅱ)求直線(xiàn)與平面所成角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 平面, 平面, 是等邊三角形, ,
是的中點(diǎn).
(1)求證: ;
(2)若直線(xiàn)與平面所成角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)橢圓: ,長(zhǎng)軸的右端點(diǎn)與拋物線(xiàn): 的焦點(diǎn)重合,且橢圓的離心率是.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)作直線(xiàn)交拋物線(xiàn)于, 兩點(diǎn),過(guò)且與直線(xiàn)垂直的直線(xiàn)交橢圓于另一點(diǎn),求面積的最小值,以及取到最小值時(shí)直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(是參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.
(1)求的直角坐標(biāo)方程和的普通方程;
(2)與相交于兩點(diǎn),設(shè)點(diǎn)為上異于的一點(diǎn),當(dāng)面積最大時(shí),求點(diǎn)到的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:()的左右焦點(diǎn)分別為,且關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)在直線(xiàn)上.
(1)求橢圓的離心率;
(2)若過(guò)焦點(diǎn)垂直軸的直線(xiàn)被橢圓截得的弦長(zhǎng)為,斜率為的直線(xiàn)交橢圓于,兩點(diǎn),問(wèn)是否存在定點(diǎn),使得,的斜率之和為定值?若存在,求出所有滿(mǎn)足條件的點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com