【題目】對某商店一個月內(nèi)每天的顧客人數(shù)進行統(tǒng)計,得到樣本的莖葉圖(如圖所示).則該樣本的中位數(shù)、眾數(shù)、極差分別是(

A.46 45 56
B.46 45 53
C.47 45 56
D.45 47 53

【答案】A
【解析】解:由樣本的莖葉圖得到:樣本中的30個數(shù)據(jù)從小到大排列,位于中間的兩個數(shù)據(jù)是45,47,
∴該樣本的中位數(shù)為: ;
出現(xiàn)次數(shù)最多的數(shù)據(jù)是45,∴該樣本的眾數(shù)是45;
該數(shù)據(jù)中最小值為12,最大值為68,
∴該樣本的極差為:68﹣12=56.
故選:A.
【考點精析】掌握平均數(shù)、中位數(shù)、眾數(shù)和極差、方差與標準差是解答本題的根本,需要知道⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)的影響,有時是我們最為關(guān)心的數(shù)據(jù);標準差和方差越大,數(shù)據(jù)的離散程度越大;標準差和方程為0時,樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實際問題時,多采用標準差.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)關(guān)于x的不等式|x﹣2|<a(a∈R)的解集為A,且 ∈A,﹣ A.
(1)對任意的x∈R,|x﹣1|+|x﹣3|≥a2+a恒成立,且a∈N,求a的值.
(2)若a+b=1,a,b∈R+ , 求 + 的最小值,并指出取得最小值時a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市司法部門為了宣傳《憲法》舉辦法律知識問答活動,隨機對該市18~68歲的人群抽取一個容量為n的樣本,并將樣本數(shù)據(jù)分成五組:[18,28),[28,38),[38,48),[48,58),[58,68),再將其按從左到右的順序分別編號為第1組,第2組,…,第5組,繪制了樣本的頻率分布直方圖;并對回答問題情況進行統(tǒng)計后,結(jié)果如下表所示.

組號

分組

回答正確的人數(shù)

回答正確的人數(shù)占本組的比例

第1組

[18,28)

5

0.5

第2組

[28,38)

18

a

第3組

[38,48)

27

0.9

第4組

[48,58)

x

0.36

第5組

[58,68)

3

0.2


(1)分別求出a,x的值;
(2)從第2,3,4組回答正確的人中用分層抽樣方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(3)在(2)的前提下,決定在所抽取的6人中隨機抽取2人頒發(fā)幸運獎,求:所抽取的人中第2組至少有1人獲得幸運獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是橢圓的左、右焦點,為坐標原點,點在橢圓上,線段軸的交點為,且

1)求橢圓的標準方程;

2)圓是以為直徑的圓,直線與圓相切,并與橢圓交于不同的兩點,,當,且滿足時,求的面積的取值范圍.

請考生在第22、23兩題中任選一題作答.注意:只能做所選定的題目.如果多做,則按所做的第一個題目計分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C1 (t為參數(shù)),在以O(shè)為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=4.
(1)求出曲線C2的直角坐標方程;
(2)若C1與C2相交于A,B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

如圖,甲向如圖1所示的平面區(qū)域內(nèi)隨機擲點、乙向如圖2所示的平面區(qū)域內(nèi)隨機擲點,假設(shè)點落在區(qū)域內(nèi)任意一點的可能性相同.已知圖1中小圓的半徑是大圓半徑的二分之一,圖2中小正方形的頂點為大正方形各邊的中點.

(1)甲、乙各擲點一次,求至少有一人擲點落在陰影區(qū)域的概率;

(2)甲、乙各擲點兩次,記點落在陰影區(qū)域的次數(shù)為,求的分布列和數(shù)學期望.

12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在[﹣1,1]的函數(shù)滿足f(﹣x)=﹣f(x),當a,b∈[﹣1,0)時,總有 >0(a≠b),若f(m+1)>f(2m),則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),并且當x∈(0,+∞)時,f(x)=2x
(1)求f(log2 )的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 )的離心率為,以橢圓的四個頂點為頂點的四邊形的面積為8.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖,斜率為的直線與橢圓交于, 兩點,點在直線的左上方.若,且直線, 分別與軸交于 點,求線段的長度.

查看答案和解析>>

同步練習冊答案