已知橢圓C的中心在原點(diǎn),一個(gè)焦點(diǎn)F(-2,0),且長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的比為,
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M(m,0)在橢圓C的長(zhǎng)軸上,設(shè)點(diǎn)P是橢圓上的任意一點(diǎn),若當(dāng)最小時(shí),點(diǎn)P恰好落在橢圓的右頂點(diǎn),求實(shí)數(shù)m的取值范圍.

(1)(2)

解析試題分析:
(1)根據(jù)橢圓的中心在原點(diǎn)可以設(shè)出橢圓的標(biāo)準(zhǔn)方程,已知焦點(diǎn)坐標(biāo),故可求的c值,所以利用長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)之比和a,b,c的關(guān)系可以建立關(guān)于a,b的兩個(gè)方程式聯(lián)立消元即可求的a,b的值,得到橢圓的標(biāo)準(zhǔn)方差.(2)根據(jù)題意設(shè)點(diǎn)P的坐標(biāo),表示,利用點(diǎn)P在橢圓上,得到關(guān)于m和P點(diǎn)橫坐標(biāo)的表達(dá)式,利用二次函數(shù)最值問題,可以得到取得最小值時(shí),m和P點(diǎn)橫坐標(biāo)之間的關(guān)系,再利用P橫坐標(biāo)的范圍得到m的取值范圍即可.
試題解析:
(1)設(shè)橢圓的方程為.      1分
由題意有:,      3分
解得.      5分
故橢圓的方程為.      6分
(2)設(shè)為橢圓上的動(dòng)點(diǎn),由于橢圓方程為,故.     7分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c3/7/uqdin2.png" style="vertical-align:middle;" />,所以
   10分
因?yàn)楫?dāng)最小時(shí),點(diǎn)恰好落在橢圓的右頂點(diǎn),即當(dāng)時(shí),
取得最小值.而,
故有,解得.        12分
又點(diǎn)在橢圓的長(zhǎng)軸上,即.       13分
故實(shí)數(shù)的取值范圍是.      14分
考點(diǎn):橢圓標(biāo)準(zhǔn)方程橢圓幾何性質(zhì)最值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線的中心在原點(diǎn),離心率為2,一個(gè)焦點(diǎn)為F(-2,0).
(1)求雙曲線方程;
(2)設(shè)Q是雙曲線上一點(diǎn),且過點(diǎn)F,Q的直線l與y軸交于點(diǎn)M,若= 2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左右焦點(diǎn)分別為、,短軸兩個(gè)端點(diǎn)為、,且四邊形是邊長(zhǎng)為2的正方形.
(1)求橢圓方程;
(2)若分別是橢圓長(zhǎng)軸的左右端點(diǎn),動(dòng)點(diǎn)滿足,連接,交橢圓于點(diǎn),證明:為定值;
(3)在(2)的條件下,試問軸上是否存在異于點(diǎn)的定點(diǎn),使得以為直徑的圓恒過直線的交點(diǎn)?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓E:的離心率為,過左焦點(diǎn)且斜率為的直線交橢圓EA,B兩點(diǎn),線段AB的中點(diǎn)為M,直線交橢圓EC,D兩點(diǎn).

(1)求橢圓E的方程;
(2)求證:點(diǎn)M在直線上;
(3)是否存在實(shí)數(shù)k,使得三角形BDM的面積是三角形ACM的3倍?若存在,求出k的值;
若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,過且于x軸垂直的直線與橢圓交于S,T,與拋物線交于C,D兩點(diǎn),且

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P為橢圓上一點(diǎn),若過點(diǎn)M(2,0)的直線與橢圓相交于不同兩點(diǎn)A和B,且滿足(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓經(jīng)過點(diǎn),其左、右頂點(diǎn)分別是,左、右焦點(diǎn)分別是、(異于、)是橢圓上的動(dòng)點(diǎn),連接交直線兩點(diǎn),若成等比數(shù)列.

(1)求此橢圓的離心率;
(2)求證:以線段為直徑的圓過點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知命題,命題:方程表示焦點(diǎn)在軸上的雙曲線.
(1)命題為真命題,求實(shí)數(shù)的取值范圍;
(2)若命題“”為真,命題“”為假,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的焦點(diǎn)在軸上,離心率為,對(duì)稱軸為坐標(biāo)軸,且經(jīng)過點(diǎn)
(1)求橢圓的方程;
(2)直線與橢圓相交于、兩點(diǎn), 為原點(diǎn),在、上分別存在異于點(diǎn)的點(diǎn)、,使得在以為直徑的圓外,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,圓C:(x+1)2+y2=16,點(diǎn)F(1,0),E是圓C上的一個(gè)動(dòng)點(diǎn),EF的垂直平分線PQ與CE交于點(diǎn)B,與EF交于點(diǎn)D.

(1)求點(diǎn)B的軌跡方程;
(2)當(dāng)點(diǎn)D位于y軸的正半軸上時(shí),求直線PQ的方程;
(3)若G是圓C上的另一個(gè)動(dòng)點(diǎn),且滿足FG⊥FE,記線段EG的中點(diǎn)為M,試判斷線段OM的長(zhǎng)度是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案