【題目】學(xué)校舉行班級(jí)籃球賽,某名運(yùn)動(dòng)員每場比賽得分記錄的莖葉圖如下:
(1)求該運(yùn)動(dòng)員得分的中位數(shù)和平均數(shù);
(2)估計(jì)該運(yùn)動(dòng)員每場得分超過10分的概率.

【答案】
(1)解:由莖葉圖可知:這組數(shù)據(jù)為3,5,7,8,10,10,10,11,12,14,

所以其中位數(shù)為 10;

平均數(shù)為 (3+5+7+8+10+10+10+11+12+14)=7.9


(2)解:超過10分的有3場,概率為
【解析】(1)根據(jù)莖葉圖寫出這組數(shù)據(jù),把數(shù)據(jù)按照從大到小排列,最中間的一個(gè)或最中間兩個(gè)數(shù)字的平均數(shù)就是中位數(shù),平均數(shù)只要代入平均數(shù)的公式得到結(jié)果.(2)超過10分的有3場,即可得出概率.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解莖葉圖的相關(guān)知識(shí),掌握莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個(gè)主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個(gè)主干后面的幾個(gè)數(shù),每個(gè)數(shù)具體是多少.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x﹣3)2+(y﹣4)2=4
(1)若平面上有兩點(diǎn)A(1,0),B(﹣1,0),點(diǎn)P是圓C上的動(dòng)點(diǎn),求使|AP|2+|BP|2取得最小值時(shí)點(diǎn)P的坐標(biāo);
(2)若Q是x軸上的動(dòng)點(diǎn),QM,QN分別切圓C于M,N兩點(diǎn),①若 ,求直線QC的方程;②求證:直線MN恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f ( x)=ax3+bx2+cx+d 的圖象如圖所示,則 的取值范圍是(
A.(﹣ ?)
B.(﹣ ,1)
C.(﹣ ,
D.(﹣ ,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+(b﹣8)x﹣a﹣ab,當(dāng)x∈(﹣3,2)時(shí),f(x)>0,當(dāng)x∈(﹣∞,﹣3)∪(2,+∞)時(shí),f(x)<0.
(1)求f(x)的解析式;
(2)若不等式ax2+bx+c≤0的解集為R,求c的取值范圍;
(3)當(dāng)x>﹣1時(shí),求y= 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線l的方程為y=kx+b(其中k的值與b無關(guān)),圓M的方程為x2+y2﹣2x﹣4=0.
(1)如果不論k取何值,直線l與圓M總有兩個(gè)不同的交點(diǎn),求b的取值范圍;
(2)b=1,l與圓交于A,B兩點(diǎn),求|AB|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,為了較為合理地確定居民日常用水量的標(biāo)準(zhǔn),通過抽樣獲得了100位居民某年的月均用水量(單位:噸),右表是100位居民月均用水量的頻率分布表,根據(jù)右表解答下列問題:

分組

頻數(shù)

頻率

[0,1)

10

b

[1,2)

20

0.20

[2,3)

a

0.30

[3,4)

20

0.20

[4,5)

10

0.10

[5,6]

10

0.10

合計(jì)

100

1.00


(1)求表中a和b的值;
(2)請(qǐng)將頻率分布直方圖補(bǔ)充完整,并根據(jù)直方圖估計(jì)該市每位居民月均用水量的眾數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】按下列程序框圖運(yùn)算,則輸出的結(jié)果是(
A.42
B.128
C.170
D.682

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若0<x< ,則2x與3sin x的大小關(guān)系(
A.2x>3sin x
B.2x<3sin x
C.2x=3sin x
D.與x的取值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知位置向量 =(log2(m2+3m﹣8),log2(2m﹣2)), =(1,0),若以O(shè)A、OB為鄰邊的平行四邊形OACB的頂點(diǎn)C在函數(shù)y= x的圖象上,則實(shí)數(shù)m=

查看答案和解析>>

同步練習(xí)冊答案