精英家教網 > 高中數學 > 題目詳情
已知橢圓中心在原點,焦點在軸上,焦距為2,離心率為
(1)求橢圓的方程;
(2)設直線經過點(0,1),且與橢圓交于兩點,若,求直線的方程.
(1);(2).

試題分析:本題主要考查橢圓的標準方程和幾何性質、直線的方程等基礎知識,考查用代數法研究圓錐曲線的性質,考查運算求解能力、綜合分析和解決問題的能力.第一問,先利用橢圓的焦距、離心率求出基本量,寫出橢圓方程;第二問,由于直線經過(0,1)點,所以先設出直線方程,與橢圓聯立,消參得到關于x的方程,先設出點坐標,通過方程得到兩根之和、兩根之積,再由,得出,聯立上述表達式得k的值,從而得到直線方程.
試題解析:(1)設橢圓方程為,
因為,所以
所求橢圓方程為                                4分
(2)由題得直線的斜率存在,設直線方程為
則由,
,則由   ..8分

所以消去
解得
所以直線的方程為,即      12分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C的左、右焦點分別為,橢圓的離心率為,且橢圓經過點
(1)求橢圓C的標準方程;
(2)線段是橢圓過點的弦,且,求內切圓面積最大時實數的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖所示,已知圓為圓上一動點,點是線段的垂直平分線與直線的交點.

(1)求點的軌跡曲線的方程;
(2)設點是曲線上任意一點,寫出曲線在點處的切線的方程;(不要求證明)
(3)直線過切點與直線垂直,點關于直線的對稱點為,證明:直線恒過一定點,并求定點的坐標.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知、分別是橢圓的左、右焦點,右焦點到上頂點的距離為2,若.
(Ⅰ)求此橢圓的方程;
(Ⅱ)點是橢圓的右頂點,直線與橢圓交于、兩點(在第一象限內),又、是此橢圓上兩點,并且滿足,求證:向量共線.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知雙曲線,、是雙曲線的左右頂點,是雙曲線上除兩頂點外的一點,直線與直線的斜率之積是
求雙曲線的離心率;
若該雙曲線的焦點到漸近線的距離是,求雙曲線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知拋物線與橢圓有公共焦點,且橢圓過點.
(1)求橢圓方程;
(2)點是橢圓的上下頂點,點為右頂點,記過點、、的圓為⊙,過點作⊙ 的切線,求直線的方程;
(3)過橢圓的上頂點作互相垂直的兩條直線分別交橢圓于另外一點、,試問直線是否經過定點,若是,求出定點坐標;若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設橢圓C:過點(0,4),離心率為
(Ⅰ)求C的方程;(Ⅱ)求過點(3,0)且斜率為的直線被C所截線段的長度.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

直線過橢圓的左焦點F,且與橢圓相交于P、Q兩點,M為PQ的中點,O為原點.若△FMO是以OF為底邊的等腰三角形,則直線l的方程為       

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知斜率為2的直線雙曲線兩點,若點的中點,則的離心率等于(   )
A.B.2C.D.

查看答案和解析>>

同步練習冊答案