對于直角坐標平面內(nèi)的任意兩點、,定義它們之間的一種“距離”:
‖AB‖=,給出下列三個命題:
①若點C在線段AB上,則‖AC‖+‖CB‖=‖AB‖;
②在△ABC中,若∠C=90°,則‖AC‖+‖CB‖=‖AB‖;
③在△ABC中,‖AC‖+‖CB‖>‖AB‖.
其中真命題的個數(shù)為
A.0 B.1 C.2 D.3
B
【解析】
試題分析:解:對于直角坐標平面內(nèi)的任意兩點A(x1,y1),B(x2,y2),定義它們之間的一種“距離”:|AB|=|x2-x1|+|y2-y1|.對于①若點C在線段AB上,設(shè)C點坐標為(x0,y0),x0在x1、x2之間,y0在y1、y2之間,則|AC|+|CB|=|x0-x1|+|y0-y1|+|x2-x0|+|y2-y0|=|x2-x1|+|y2-y1|=|AB|成立,故①正確.對于②平方后不能消除x0,y0,命題不成立;對于③在△ABC中,|AC|+|CB|=|x0-x1|+|y0-y1|+|x2-x0|+|y2-y0|≥|(x0-x1)+(x2-x0)|+|(y0-y1)+(y2-y0)|=|x2-x1|+|y2-y1|=|AB|.③不一定成立∴命題①成立,故選:B.
考點:新定義的應用
點評:此題主要考查新定義的問題,對于此類型的題目需要認真分析題目的定義再求解,切記不可脫離題目要求.屬于中檔題目.本題的易錯點在于不等式:|a|+|b|≥|a+b|忘記等號也可以成立
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
π |
3 |
BC |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源:2010年福建省高二第二學期半期考試數(shù)學(理科)試題 題型:選擇題
對于直角坐標平面內(nèi)的任意兩點A(x,y)、B(x,y),定義它們之間的一種“距離”:
‖AB‖=︱x-x︱+︱y-y︱。給出下列三個命題:
①若點C在線段AB上,則‖AC‖+‖CB‖=‖AB‖;
②在△ABC中,若∠C=90°,則‖AC‖+‖CB‖=‖AB‖;
③在△ABC中,‖AC‖+‖CB‖>‖AB‖.
其中真命題的個數(shù)為( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com