【題目】某商場為了了解顧客的購物信息,隨機在商場收集了位顧客購物的相關(guān)數(shù)據(jù)如下表:
一次購物款(單位:元) | |||||
顧客人數(shù) |
統(tǒng)計結(jié)果顯示位顧客中購物款不低于元的顧客占,該商場每日大約有名顧客,為了增加商場銷售額度,對一次購物不低于元的顧客發(fā)放紀念品.
(Ⅰ)試確定, 的值,并估計每日應準備紀念品的數(shù)量;
(Ⅱ)為了迎接春節(jié),商場進行讓利活動,一次購物款元及以上的一次返利元;一次購物不超過元的按購物款的百分比返利,具體見下表:
一次購物款(單位:元) | ||||
返利百分比 |
請問該商場日均大約讓利多少元?
科目:高中數(shù)學 來源: 題型:
【題目】國慶期間,某旅行社組團去風景區(qū)旅游,若旅行團人數(shù)不超過20人,每人需交費用800元;若旅行團人數(shù)超過20人,則給予優(yōu)惠:每多1人,人均費用減少10元,直到達到規(guī)定人數(shù)60人為止.旅行社需支付各種費用共計10000元.
(1)寫出每人需交費用S關(guān)于旅行團人數(shù)的函數(shù);
(2)旅行團人數(shù)x為多少時,旅行社可獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正四棱錐的側(cè)棱和底面邊長相等,在這個正四棱錐的條棱中任取兩條,按下列方式定義隨機變量的值:
若這兩條棱所在的直線相交,則的值是這兩條棱所在直線的夾角大。ɑ《戎疲;
若這兩條棱所在的直線平行,則;
若這兩條棱所在的直線異面,則的值是這兩條棱所在直線所成角的大小(弧度制).
(1)求的值;
(2)求隨機變量的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定點、,直線、相交于點,且它們的斜率之積為,記動點的軌跡為曲線.
(Ⅰ)求曲線的方程;
(Ⅱ)設直線與曲線交于、兩點,若直線與斜率之積為,求證:直線過定點,并求定點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓+=1(a>b>0)上的點P到左,右兩焦點F1,F2的距離之和為2,離心率為.
(1)求橢圓的標準方程;
(2)過右焦點F2的直線l交橢圓于A,B兩點,若y軸上一點M(0,)滿足|MA|=|MB|,求直線l的斜率k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為偶函數(shù).
(1)求實數(shù)的值,并寫出在區(qū)間上的增減性和值域(不需要證明);
(2)令,其中,若對任意、,總有,求的取值范圍;
(3)令,若對任意、,總有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),),曲線的上點 對應的參數(shù),將曲線經(jīng)過伸縮變換后得到曲線,直線的參數(shù)方程為
(1)說明曲線是哪種曲線,并將曲線轉(zhuǎn)化為極坐標方程;
(2)求曲線上的點到直線的距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com