求函數(shù)
,
的單調(diào)增區(qū)間_________________。
,
試題分析:
,令
,當(dāng)
時(shí),
,當(dāng)
時(shí),
函數(shù)的增區(qū)間為
,
點(diǎn)評(píng):求
的單調(diào)區(qū)間,先將
看做一個(gè)整體來(lái)對(duì)待
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本題滿分16分)已知函數(shù)
(其中
為常數(shù),
)為偶函數(shù).
(1) 求
的值;
(2) 用定義證明函數(shù)
在
上是單調(diào)減函數(shù);
(3) 如果
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(10分)證明
為R上的單調(diào)遞增函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分14分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235348823303.png" style="vertical-align:middle;" />的函數(shù)
是奇函數(shù)
⑴求函數(shù)
的解析式;
⑵判斷并證明函數(shù)
的單調(diào)性;
⑶若對(duì)于任意的
,不等式
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知函數(shù)
,
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意正實(shí)數(shù)x,不等式
恒成立,求實(shí)數(shù)k的值;
(Ⅲ)求證:
.(其中
)
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本題13分)已知函數(shù)
。
(Ⅰ)若
,試判斷并證明
的單調(diào)性;
(Ⅱ)若函數(shù)
在
上單調(diào),且存在
使
成立,求
的取值范圍;
(Ⅲ)當(dāng)
時(shí),求函數(shù)
的最大值的表達(dá)式
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
已知函數(shù)
,則
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
函數(shù)
的單減區(qū)間是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分16分)
已知函數(shù)
是偶函數(shù).
(1)求
的值;
(2)設(shè)函數(shù)
,其中
若函數(shù)
與
的圖象有且只有一個(gè)交點(diǎn),求
的取值范圍.
查看答案和解析>>