【題目】如圖,在四棱錐中,為等邊三角形,,,且,,中點(diǎn).

(1)求證:平面平面;

(2)若線段上存在點(diǎn),使得二面角的大小為,求的值;

(3)在(2)的條件下,求點(diǎn)到平面的距離.

【答案】(1)證明見解析;(2);(3).

【解析】分析:(1)證明PE⊥AD,PE⊥BE,即可證明PE⊥平面ABCD,從而證明平面PAD⊥平面ABCD;
(2)建立空間直角坐標(biāo)系,利用坐標(biāo)表示向量,求出平面EBQ和平面EBC的法向量,由此表示二面角Q-BE-C,求出的值;
(3)利用在平面EBQ法向量上的投影,求出點(diǎn)C到平面QEB的距離.

(1)證明:連接,,

是等邊三角形,中點(diǎn),∴,

又∵,∴,∴,且,

∴四邊形為矩形,∴,

,∴

又∵,∴平面

又∵平面,∴平面平面.

(2)如圖建系,,,,,

設(shè),

,

設(shè)平面的法向量為,

,

,

平面的法向量不妨設(shè)為

,

,∴(舍),

.

(3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校研究性學(xué)習(xí)小組調(diào)查學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)成績(jī)的影響,詢問了30名同學(xué),得到如下的列聯(lián)表:

使用智能手機(jī)

不使用智能手機(jī)

總計(jì)

學(xué)習(xí)成績(jī)優(yōu)秀

4

8

12

學(xué)習(xí)成績(jī)不優(yōu)秀

16

2

18

總計(jì)

20

10

30

(Ⅰ)根據(jù)以上列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過0.005的前提下認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)成績(jī)有影響?

(Ⅱ)從使用智能手機(jī)的20名同學(xué)中,按分層抽樣的方法選出5名同學(xué),求所抽取的5名同學(xué)中學(xué)習(xí)成績(jī)優(yōu)秀學(xué)習(xí)成績(jī)不優(yōu)秀的人數(shù);

(Ⅲ)從問題()中被抽取的5名同學(xué),再隨機(jī)抽取3名同學(xué),試求抽取3名同學(xué)中恰有2名同學(xué)為學(xué)習(xí)成績(jī)不優(yōu)秀的概率.

參考公式:,其中

參考數(shù)據(jù):

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】人造地球衛(wèi)星繞地球運(yùn)行遵循開普勒行星運(yùn)動(dòng)定律:衛(wèi)星在以地球?yàn)榻裹c(diǎn)的橢圓軌道上繞地球運(yùn)行時(shí),其運(yùn)行速度是變化的,速度的變化服從面積守恒規(guī)律,即衛(wèi)星的向徑(衛(wèi)星至地球的連線)在相同的時(shí)間內(nèi)掃過的面積相等.設(shè)橢圓的長(zhǎng)軸長(zhǎng)、焦距分別為李明根據(jù)所學(xué)的橢圓知識(shí),得到下列結(jié)論:

①衛(wèi)星向徑的最小值為,最大值為;

②衛(wèi)星向徑的最小值與最大值的比值越小,橢圓軌道越扁;

③衛(wèi)星運(yùn)行速度在近地點(diǎn)時(shí)最小,在遠(yuǎn)地點(diǎn)時(shí)最大

其中正確結(jié)論的個(gè)數(shù)是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍;

2)當(dāng)時(shí),不等式上恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車是城市慢行系統(tǒng)的一種創(chuàng)新模式,對(duì)于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價(jià)格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20 000元,每生產(chǎn)一輛新樣式單車需要增加投入100元.根據(jù)初步測(cè)算,自行車廠的總收益(單位:元)滿足分段函數(shù) 其中x是新樣式單車的月產(chǎn)量(單位:輛),利潤(rùn)=總收益-總成本.

(1)試將自行車廠的利潤(rùn)y元表示為月產(chǎn)量x的函數(shù);

(2)當(dāng)月產(chǎn)量為多少件時(shí)自行車廠的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,,不在軸上的動(dòng)點(diǎn)滿足于點(diǎn)的中點(diǎn)。

(1)求點(diǎn)的軌跡的方程;

(2)設(shè)曲線軸正半軸的交點(diǎn)為,斜率為的直線交兩點(diǎn),記直線的斜率分別為,試問是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)市場(chǎng)調(diào)查,某門市部的一種小商品在過去的20天內(nèi)的日銷售量與價(jià)格均為時(shí)間的函數(shù),且日銷售量近似滿足函數(shù),而且銷售價(jià)格近似滿足于

1試寫出該種商品的日銷售額與時(shí)間的函數(shù)表達(dá)式;

2求該種商品的日銷售額的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某水產(chǎn)試驗(yàn)廠實(shí)行某種魚的人工孵化,10 000個(gè)魚卵能孵化8 513尾魚苗,根據(jù)概率的統(tǒng)計(jì)定義解答下列問題:

(1)這種魚卵的孵化率(孵化概率)是多少?

(2)30 000個(gè)魚卵大約能孵化多少尾魚苗?

(3)要孵化5 000尾魚苗,大概需要多少個(gè)魚卵?(精確到百位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是圓內(nèi)一個(gè)定點(diǎn),是圓上任意一點(diǎn).線段的垂直平分線和半徑相交于點(diǎn).

(Ⅰ)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)的軌跡是什么曲線?并求出其軌跡方程;

(Ⅱ)過點(diǎn)作直線與曲線交于、兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,求的面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案