【題目】如圖所示,在三棱錐A-BOC中,OA⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=,動點D在線段AB上.
(1)求證:平面COD⊥平面AOB;
(2)當OD⊥AB時,求三棱錐C-OBD的體積.
【答案】(1)詳見解析(2)
【解析】
試題分析:(1)欲證平面COD⊥平面AOB,根據(jù)面面垂直的判定定理可知在平面COD內(nèi)一直線與平面AOB垂直,根據(jù)勾股定理可知OC⊥OB,根據(jù)線面垂直的判定定理可知OC⊥平面AOB,而OC平面COD,滿足定理所需條件;(2)OD⊥AB,OD=,此時,BD=1.根據(jù)三棱錐的體積公式求出所求即可
試題解析:(1)∵AO⊥底面BOC,
∴AO⊥OC,
AO⊥OB.
∵∠OAB=∠OAC=30°,AB=AC=4,
∴OC=OB=2.
又BC=2,
∴OC⊥OB,
∴OC⊥平面AOB.
∵OC平面COD,
∴平面COD⊥平面AOB.
(2)∵OD⊥AB,∴BD=1,OD=.
∴VC-OBD = ×××1×2=
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(1)設(shè),求的單調(diào)區(qū)間;
(2)若在處取得極大值,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù),其中.
(1)當時,恒成立,求的取值范圍;
(2)討論函數(shù)的極值點的個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校對任課教師的年齡狀況和接受教育程度(學歷)做調(diào)研,其部分結(jié)果(人數(shù)分布)如表:
學歷 | 35歲以下 | 35~50歲 | 50歲以上 |
本科 | 80 | 30 | 20 |
研究生 | x | 20 | y |
(1)用分層抽樣的方法在35~50歲年齡段的教師中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2人,求至少有1人的學歷為研究生的概率;
(2)若按年齡狀況用分層抽樣的方法抽取N個人,其中35歲以下48人,50歲以上10人,再從這N個人中隨機抽取出1人,此人的年齡為50歲以上的概率為,求x、y的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解某工廠開展群眾體育活動的情況,擬采用分層抽樣的方法從A,B,C三個區(qū)中抽取7個工廠進行調(diào)查,已知A,B,C區(qū)中分別有18,27,18個工廠
(Ⅰ)求從A,B,C區(qū)中分別抽取的工廠個數(shù);
(Ⅱ)若從抽取的7個工廠中隨機抽取2個進行調(diào)查結(jié)果的對比,求這2個工廠中至少有1個來自A區(qū)的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)據(jù),,,…,是杭州市100個普通職工的2016年10月份的收入(均不超過2萬元),設(shè)這100個數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上馬云2016年10月份的收入(約100億元),則相對于、、,這101個月收入數(shù)據(jù)( )
A. 平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
B. 平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
C. 平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
D. 平均數(shù)大大增大,中位數(shù)可能不變,方差變大
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為研究冬季晝夜溫差大小對某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:
組號 | 1 | 2 | 3 | 4 | 5 |
溫差() | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(1)若選取的是第1組與第5組的兩組數(shù)據(jù),請根據(jù)第2組至第4組的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一次籃球定點投籃訓練中,規(guī)定每人最多投3次,在處每投進一球得3分;在處每投進一球得2分.如果前兩次得分之和超過3分就停止投籃;否則投第三次.某同學在處的投中率,在處的投中率為,該同學選擇先在處投第一球,以后都在處投,且每次投籃都互不影響,用表示該同學投籃訓練結(jié)束后所得的總分,其分布列為:
0 | 2 | 3 | 4 | 5 | |
0.03 |
(1)求的值;
(2)求隨機變量的數(shù)學期望;
(3)試比較該同學選擇上述方式投籃得分超過3分與選擇都在處投籃得分超過3分的概率的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com