【題目】設(shè)函數(shù),.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時,討論函數(shù)圖象的交點個數(shù).

【答案】(1)當(dāng)時,函數(shù)的單調(diào)增區(qū)間是,無單調(diào)減區(qū)間;當(dāng)時,函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;(2)1個.

【解析】

(1)先求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,從而求出函數(shù)的單調(diào)區(qū)間;

(2)問題轉(zhuǎn)化為求函數(shù)的零點個數(shù)問題,通過求導(dǎo),得到函數(shù)的單調(diào)區(qū)間,求出的極小值,從而求出函數(shù)的零點個數(shù)即的交點個數(shù).

(1)函數(shù)的定義域為,

當(dāng)時,,所以函數(shù)的單調(diào)增區(qū)間是,無單調(diào)減區(qū)間;

當(dāng)時,;

當(dāng)時,,函數(shù)單調(diào)遞減;當(dāng)時,,函數(shù)單調(diào)遞增.

綜上,當(dāng)時,函數(shù)的單調(diào)增區(qū)間是,無單調(diào)減區(qū)間;

當(dāng)時,函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是.

(2)令 ,,問題等價于求函數(shù)的零點個數(shù),

當(dāng)時,,,有唯一零點;

當(dāng)時,,

當(dāng)時,,函數(shù)為減函數(shù),注意到,所以有唯一零點;

當(dāng)時,由,由,所以函數(shù)上單調(diào)遞減,在上單調(diào)遞增,注意到,

所以有唯一零點;

當(dāng)時,由得,,

,

所以函數(shù)單調(diào)遞減,在單調(diào)遞增,又,

所以,

,所以有唯一零點.

綜上,函數(shù)有唯一零點,即當(dāng)時函數(shù)圖象總有一個交點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201913日嫦娥四號探測器成功實現(xiàn)人類歷史上首次月球背面軟著陸,我國航天事業(yè)取得又一重大成就,實現(xiàn)月球背面軟著陸需要解決的一個關(guān)鍵技術(shù)問題是地面與探測器的通訊聯(lián)系.為解決這個問題,發(fā)射了嫦娥四號中繼星“鵲橋”,鵲橋沿著圍繞地月拉格朗日點的軌道運行.點是平衡點,位于地月連線的延長線上.設(shè)地球質(zhì)量為M,月球質(zhì)量為M,地月距離為R點到月球的距離為r,根據(jù)牛頓運動定律和萬有引力定律,r滿足方程:

.

設(shè),由于的值很小,因此在近似計算中,則r的近似值為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知曲線上的點到點的距離比它到直線的距離小2.

1)求曲線的方程;

2)曲線在點處的切線軸交于點.直線分別與直線軸交于點,以為直徑作圓,過點作圓的切線,切點為,試探究:當(dāng)點在曲線上運動(點與原點不重合)時,線段的長度是否發(fā)生變化?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某鎮(zhèn)有一塊空地,其中,,.當(dāng)?shù)劓?zhèn)政府規(guī)劃將這塊空地改造成一個旅游景點,擬在中間挖一個人工湖,其中,都在邊上,且,挖出的泥土堆放在地帶上形成假山,剩下的地帶開設(shè)兒童游樂場.為安全起見,需在的周圍安裝防護網(wǎng).

(1)當(dāng)時,求防護網(wǎng)的總長度;

(2)為節(jié)省投入資金,人工湖的面積要盡可能小,問如何設(shè)計施工方案,可使的面積最。孔钚∶娣e是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面垂直于,為棱上的點,,.

(1)若為棱的中點,求證:平面;

(2)當(dāng)時,求平面與平面所成的銳二面角的余弦值;

(3)在第(2)問條件下,設(shè)點是線段上的動點,與平面所成的角為,求當(dāng)取最大值時點的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若存在,使得成立,則的最小值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),等腰梯形,,,、分別是的兩個三等分點.若把等腰梯形沿虛線、折起,使得點和點重合,記為點,如圖(2).

(Ⅰ)求證:平面平面;

(Ⅱ)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點分別為,點在橢圓上,且滿足

(1)求橢圓的方程;

(2)設(shè)傾斜角為的直線交于,兩點,記的面積為,求取最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)采用隨機模擬的方法估計某運動員射擊4次,至少擊中3次的概率;先由計算器給出09之間取整數(shù)值的隨機數(shù),指定01、2表示沒有擊中目標(biāo),3、4、56、78、9表示擊中目標(biāo),以4個隨機數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20隨機數(shù):

根據(jù)以上數(shù)據(jù)估計該射擊運動員射擊4次至少擊中3次的概率為(

A.0.55B.0.6C.0.65D.0.7

查看答案和解析>>

同步練習(xí)冊答案