【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調(diào)研可知:甲城市收益P與投入(單位:萬元)滿足,乙城市收益Q與投入(單位:萬元)滿足,設(shè)甲城市的投入為(單位:萬元),兩個城市的總收益為(單位:萬元).
(1)當(dāng)甲城市投資50萬元時,求此時公司總收益;
(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?
【答案】(1)43.5(萬元);(2)當(dāng)甲城市投資72萬元,乙城市投資48萬元時,總收益最大,且最大收益為44萬元.
【解析】試題分析:(1)當(dāng)時,此時甲城市投資萬元,乙城市投資萬元,即可得到總收益;
(2)由題知,甲城市投資萬元,乙城市投資萬元,得出函數(shù)的解析式,進而可求解最大值總收益.
試題解析:
(1)當(dāng)時,此時甲城市投資50萬元,乙城市投資70萬元
所以總收益 =43.5(萬元)
(2)由題知,甲城市投資萬元,乙城市投資萬元
所以
依題意得,解得
故
令,則
所以
當(dāng),即萬元時,的最大值為44萬元,
所以當(dāng)甲城市投資72萬元,乙城市投資48萬元時,總收益最大,且最大收益為44萬元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人玩卡片游戲:他們手里都拿著分別標(biāo)有數(shù)字1,2,3,4,5,6的6張卡片,各自從自己的卡片中隨機抽出1張,規(guī)定兩人誰抽出的卡片上的數(shù)字大,誰就獲勝,數(shù)字相同則為平局.
(1)求甲獲勝的概率.
(2)現(xiàn)已知他們都抽出了標(biāo)有數(shù)字6的卡片,為了分出勝負,他們決定從手里剩下的卡片中再各自隨機抽出1張,若他們這次抽出的卡片上數(shù)字之和為偶數(shù),則甲獲勝,否則乙獲勝.請問:這個規(guī)則公平嗎,為什么 ?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:設(shè)一正方形紙片ABCD邊長為2分米,切去陰影部分所示的四個全等的等腰三角形,剩余為一個正方形和四個全等的等腰三角形,沿虛線折起,恰好能做成一個正四棱錐(粘接損耗不計),圖中,O為正四棱錐底面中心.
(Ⅰ)若正四棱錐的棱長都相等,求這個正四棱錐的體積V;
(Ⅱ)設(shè)等腰三角形APQ的底角為x,試把正四棱錐的側(cè)面積S表示為x的函數(shù),并求S的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(1)判斷函數(shù)的奇偶性;
(2) 判斷函數(shù)在(1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)若,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形的長為2,寬為1, , 邊分別在軸、軸的正半軸上, 點與坐標(biāo)原點重合,將矩形折疊,使點落在線段上,設(shè)此點為.
(1)若折痕的斜率為-1,求折痕所在的直線的方程;
(2)若折痕所在直線的斜率為,( 為常數(shù)),試用表示點的坐標(biāo),并求折痕所在的直線的方程;
(3)當(dāng)時,求折痕長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(xR),g(x)=2a-1
(1)求函數(shù)f(x)的單調(diào)區(qū)間與極值.
(2)若f(x)≥g(x)對恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,經(jīng)過點且斜率為的直線與橢圓有兩個不同的交點和.
(1)求的取值范圍;
(2)設(shè)橢圓與軸正半軸、軸正半軸的交點分別為,是否存在常數(shù),使得向量與共線?如果存在,求值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】全國大學(xué)生機器人大賽是由共青團中央,全國學(xué)聯(lián),深圳市人民政府聯(lián)合主辦的賽事,是中國最具影響力的機器人項目,是全球獨創(chuàng)的機器人競技平臺.全國大學(xué)生機器人大賽比拼的是參賽選手們的能力,堅持和態(tài)度,展現(xiàn)的是個人實力以及整個團隊的力量.2015賽季共吸引全國240余支機器人戰(zhàn)隊踴躍報名,這些參賽戰(zhàn)隊來自全國六大賽區(qū),150余所高等院校,其中不乏北京大學(xué),清華大學(xué),上海交大,中國科大,西安交大等眾多國內(nèi)頂尖高校,經(jīng)過嚴(yán)格篩選,最終由111支機器人戰(zhàn)隊參與到2015年全國大學(xué)生機器人大賽的激烈角逐之中,某大學(xué)共有“機器人”興趣團隊1000個,大一、大二、大三、大四分別有100,200,300,400個,為挑選優(yōu)秀團隊,現(xiàn)用分層抽樣的方法,從以上團隊中抽取20個團隊.
(1)應(yīng)從大三抽取多少個團隊?
(2)將20個團隊分為甲、乙兩組,每組10個團隊,進行理論和實踐操作考試(共150分),甲、乙兩組的分數(shù)如下:
甲:125,141,140,137,122,114,119,139,121,142
乙:127,116,144,127,144,116,140,140,116,140
從甲、乙兩組中選一組強化訓(xùn)練,備戰(zhàn)機器人大賽.從統(tǒng)計學(xué)數(shù)據(jù)看,若選擇甲組,理由是什么?若選擇乙組,理由是什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com