【題目】關(guān)于函數(shù),有下述四個(gè)結(jié)論:
①是周期為的函數(shù);
②在單調(diào)遞增;
③在上有三個(gè)零點(diǎn);
④的值域是.
其中所有正確結(jié)論的編號(hào)是( )
A.②③B.①③C.①③④D.①②④
【答案】B
【解析】
①計(jì)算,即可判斷出結(jié)果;②分,兩種情況討論,根據(jù)二次函數(shù)以及正弦函數(shù)的單調(diào)性,即可判斷出結(jié)果;③分,兩種情況,分別計(jì)算零點(diǎn),即可判斷出結(jié)果;④由③,只需計(jì)算出時(shí)的最小值,即可判斷出結(jié)果.
①因?yàn)?/span>,
所以;
因此是周期為的函數(shù);故①正確;
②當(dāng)時(shí),,則,
令,則在上單調(diào)遞增,所以,
又是開(kāi)口向上,對(duì)稱軸為的二次函數(shù),
因此在上單調(diào)遞增,
所以函數(shù)在上單調(diào)遞增;
當(dāng)時(shí),,則,
令,則在上單調(diào)遞增,所以,
又是開(kāi)口向下,對(duì)稱軸為的二次函數(shù),
因此在上單調(diào)遞減,
所以函數(shù)在上單調(diào)遞減;故②錯(cuò);
③當(dāng)時(shí),,則,
由,解得:或,
因此或;
當(dāng)時(shí),,則
由,解得:或,
因此;
綜上,在上有三個(gè)零點(diǎn),故③正確;
④由③可得,當(dāng)時(shí),,
令,根據(jù)正弦函數(shù)的性質(zhì),可得:
時(shí),,
又是開(kāi)口向上,對(duì)稱軸為的二次函數(shù),
所以,
即在上的最小值為,故④錯(cuò).
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線在y軸上的截距為.
(1)求a;
(2)討論函數(shù)和的單調(diào)性;
(3)設(shè),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國(guó)際上常用的衡量人體胖瘦程度以及是否健康的一個(gè)標(biāo)準(zhǔn).對(duì)于高中男體育特長(zhǎng)生而言,當(dāng)數(shù)值大于或等于20.5時(shí),我們說(shuō)體重較重,當(dāng)數(shù)值小于20.5時(shí),我們說(shuō)體重較輕,身高大于或等于我們說(shuō)身高較高,身高小于170cm我們說(shuō)身高較矮.
(Ⅰ)已知某高中共有32名男體育特長(zhǎng)生,其身高與指數(shù)的數(shù)據(jù)如散點(diǎn)圖,請(qǐng)根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認(rèn)為男生的身高對(duì)指數(shù)有影響.
身高較矮 | 身高較高 | 合計(jì) | |
體重較輕 | |||
體重較重 | |||
合計(jì) |
(Ⅱ)①?gòu)纳鲜?/span>32名男體育特長(zhǎng)生中隨機(jī)選取8名,其身高和體重的數(shù)據(jù)如表所示:
編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
體重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請(qǐng)完善下列殘差表,并求(解釋變量(身高)對(duì)于預(yù)報(bào)變量(體重)變化的貢獻(xiàn)值)(保留兩位有效數(shù)字);
編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
體重(kg) | 58 | 53 | 61 | 66 | 57 | 50 | 66 | |
殘差 |
②通過(guò)殘差分析,對(duì)于殘差的最大(絕對(duì)值)的那組數(shù)據(jù),需要確認(rèn)在樣本點(diǎn)的采集中是否有人為的錯(cuò)誤,已知通過(guò)重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為.小明重新根據(jù)最小二乘法的思想與公式,已算出,請(qǐng)?jiān)谛∶魉愕幕A(chǔ)上求出男體育特長(zhǎng)生的身高與體重的線性回歸方程.
參考數(shù)據(jù):
,,,,
參考公式:,,,,.
0.10 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.811 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為實(shí)現(xiàn)2020年全面建設(shè)小康社會(huì),某地進(jìn)行產(chǎn)業(yè)的升級(jí)改造.經(jīng)市場(chǎng)調(diào)研和科學(xué)研判,準(zhǔn)備大規(guī)模生產(chǎn)某高科技產(chǎn)品的一個(gè)核心部件,目前只有甲、乙兩種設(shè)備可以獨(dú)立生產(chǎn)該部件.如圖是從甲設(shè)備生產(chǎn)的部件中隨機(jī)抽取400件,對(duì)其核心部件的尺寸x,進(jìn)行統(tǒng)計(jì)整理的頻率分布直方圖.
根據(jù)行業(yè)質(zhì)量標(biāo)準(zhǔn)規(guī)定,該核心部件尺寸x滿足:|x﹣12|≤1為一級(jí)品,1<|x﹣12|≤2為二級(jí)品,|x﹣12|>2為三級(jí)品.
(Ⅰ)現(xiàn)根據(jù)頻率分布直方圖中的分組,用分層抽樣的方法先從這400件樣本中抽取40件產(chǎn)品,再?gòu)乃槿〉?/span>40件產(chǎn)品中,抽取2件尺寸x∈[12,15]的產(chǎn)品,記ξ為這2件產(chǎn)品中尺寸x∈[14,15]的產(chǎn)品個(gè)數(shù),求ξ的分布列和數(shù)學(xué)期望;
(Ⅱ)將甲設(shè)備生產(chǎn)的產(chǎn)品成箱包裝出售時(shí),需要進(jìn)行檢驗(yàn).已知每箱有100件產(chǎn)品,每件產(chǎn)品的檢驗(yàn)費(fèi)用為50元.檢驗(yàn)規(guī)定:若檢驗(yàn)出三級(jí)品需更換為一級(jí)或二級(jí)品;若不檢驗(yàn),讓三級(jí)品進(jìn)入買(mǎi)家,廠家需向買(mǎi)家每件支付200元補(bǔ)償.現(xiàn)從一箱產(chǎn)品中隨機(jī)抽檢了10件,結(jié)果發(fā)現(xiàn)有1件三級(jí)品.若將甲設(shè)備的樣本頻率作為總體的慨率,以廠家支付費(fèi)用作為決策依據(jù),問(wèn)是否對(duì)該箱中剩余產(chǎn)品進(jìn)行一一檢驗(yàn)?請(qǐng)說(shuō)明理由;
(Ⅲ)為加大升級(jí)力度,廠家需增購(gòu)設(shè)備.已知這種產(chǎn)品的利潤(rùn)如下:一級(jí)品的利潤(rùn)為500元/件;二級(jí)品的利潤(rùn)為400元/件;三級(jí)品的利潤(rùn)為200元/件.乙種設(shè)備產(chǎn)品中一、二、三級(jí)品的概率分別是,,.若將甲設(shè)備的樣本頻率作為總體的概率,以廠家的利潤(rùn)作為決策依據(jù).應(yīng)選購(gòu)哪種設(shè)備?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】按照水果市場(chǎng)的需要等因素,水果種植戶把某種成熟后的水果按其直徑的大小分為不同等級(jí).某商家計(jì)劃從該種植戶那里購(gòu)進(jìn)一批這種水果銷(xiāo)售.為了了解這種水果的質(zhì)量等級(jí)情況,現(xiàn)隨機(jī)抽取了100個(gè)這種水果,統(tǒng)計(jì)得到如下直徑分布表(單位:mm):
d | |||||
等級(jí) | 三級(jí)品 | 二級(jí)品 | 一級(jí)品 | 特級(jí)品 | 特級(jí)品 |
頻數(shù) | 1 | m | 29 | n | 7 |
用分層抽樣的方法從其中的一級(jí)品和特級(jí)品共抽取6個(gè),其中一級(jí)品2個(gè).
(1)估計(jì)這批水果中特級(jí)品的比例;
(2)已知樣本中這批水果不按等級(jí)混裝的話20個(gè)約1斤,該種植戶有20000斤這種水果待售,商家提出兩種收購(gòu)方案:
方案A:以6.5元/斤收購(gòu);
方案B:以級(jí)別分裝收購(gòu),每袋20個(gè),特級(jí)品8元/袋,一級(jí)品5元/袋,二級(jí)品4元/袋,三級(jí)品3元/袋.
用樣本的頻率分布估計(jì)總體分布,問(wèn)哪個(gè)方案種植戶的收益更高?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),將曲線經(jīng)過(guò)伸縮變換后得到曲線.在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)說(shuō)明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;
(2)已知點(diǎn)是曲線上的任意一點(diǎn),又直線上有兩點(diǎn)和,且,又點(diǎn)的極角為,點(diǎn)的極角為銳角.求:
①點(diǎn)的極角;
②面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年12月18日上午10時(shí),在人民大會(huì)堂舉行了慶祝改革開(kāi)放40周年大會(huì).40年眾志成城,40年砥礪奮進(jìn),40年春風(fēng)化雨,中國(guó)人民用雙手書(shū)寫(xiě)了國(guó)家和民族發(fā)展的壯麗史詩(shī).會(huì)后,央視媒體平臺(tái),收到了來(lái)自全國(guó)各地的紀(jì)念改革開(kāi)放40年變化的老照片,并從眾多照片中抽取了100張照片參加“改革開(kāi)放40年圖片展”,其作者年齡集中在之間,根據(jù)統(tǒng)計(jì)結(jié)果,做出頻率分布直方圖如下:
(Ⅰ)求這100位作者年齡的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(Ⅱ)由頻率分布直方圖可以認(rèn)為,作者年齡X服從正態(tài)分布,其中近似為樣本平
均數(shù),近似為樣本方差.
(i)利用該正態(tài)分布,求;
(ii)央視媒體平臺(tái)從年齡在和的作者中,按照分層抽樣的方法,抽出了7人參加“紀(jì)念改革開(kāi)放40年圖片展”表彰大會(huì),現(xiàn)要從中選出3人作為代表發(fā)言,設(shè)這3位發(fā)言者的年齡落在區(qū)間的人數(shù)是Y,求變量Y的分布列和數(shù)學(xué)期望.附:,若,則,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若是函數(shù)的極值點(diǎn),求a的值;
(2)當(dāng)時(shí),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,橢圓上的點(diǎn)到其左焦點(diǎn)的最大距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓左焦點(diǎn)的直線與橢圓交于兩點(diǎn),直線,過(guò)點(diǎn)作直線的垂線與直線交于點(diǎn),求的最小值和此時(shí)直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com