已知有公共焦點(diǎn)的橢圓與雙曲線中心在原點(diǎn),焦點(diǎn)在
軸上,左右焦點(diǎn)分別為
,且它們在第一象限的交點(diǎn)為
,
是以
為底邊的等要三角形,若
,雙曲線的離心率的取值范圍為
,則該橢圓的離心率的取值范圍為
。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知A、B分別為曲線C:
與
x軸的左右兩個(gè)交點(diǎn),直線
l過點(diǎn)B且
x軸垂直,M為
l上的一點(diǎn),連結(jié)AM交曲線C于點(diǎn)T。
(I)當(dāng)
,求點(diǎn)T坐標(biāo);
(II)點(diǎn)M在x軸上方,若
的面積為2,當(dāng)
的面積的最大值為
時(shí),求曲線C的離心率
e的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題15分)已知拋物線
,過點(diǎn)
的直線
交拋物線
于
兩點(diǎn),且
.
(1)求拋物線
的方程;
(2)過點(diǎn)
作
軸的平行線與直線
相交于點(diǎn)
,若
是等腰三角形,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題共12分)
在直角坐標(biāo)系
中,動點(diǎn)P到兩定點(diǎn)
,
的距離之和等于4,設(shè)動點(diǎn)P的軌跡為
,過點(diǎn)
的直線與
交于A,B兩點(diǎn).
(1)寫出
的方程;
(2)設(shè)d為A、B兩點(diǎn)間的距離,d是否存在最大值、最小值;若存在,求出d的最大值、最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若曲線
與直線
沒有公共點(diǎn),則
的取值范圍是________________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分,(Ⅰ)小問5分,(Ⅱ)小問7分.)
如題(21)圖,M(-2,0)和N(2,0)是平面上的兩點(diǎn),動點(diǎn)P滿足:
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)設(shè)d為點(diǎn)P到直線l:
的距離,若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)已知橢圓
的左、右焦點(diǎn)分別為
、
,其中
也是拋物線
的焦點(diǎn),
是
與
在第一象限的交點(diǎn),且
.(Ⅰ)求橢圓
的方程;(Ⅱ)已知菱形
的頂點(diǎn)
A﹑
C在橢圓
上,頂點(diǎn)
B﹑
C在直線
上,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓
的焦點(diǎn)為
,過F
2垂直于x軸的直線交橢圓于一點(diǎn)P,那么|PF
1|的值是
。
查看答案和解析>>