【題目】某電視臺在一次對收看文藝節(jié)目和新聞節(jié)目的抽樣調(diào)查中,隨機抽取了100名電視觀眾,相關(guān)的數(shù)據(jù)如表所示:
類別 | 文藝節(jié)目 | 新聞節(jié)目 | 總計 |
20至40歲 | 40 | 18 | 58 |
大于40歲 | 15 | 27 | 42 |
總計 | 55 | 45 | 100 |
(1)由表中數(shù)據(jù)直觀分析,收看新聞節(jié)目的觀眾是否與年齡有關(guān)?
(2)用分層抽樣方法在收看新聞節(jié)目的觀眾中隨機抽取5名,則大于40歲的觀眾應(yīng)該抽取幾名?
【答案】(1)有關(guān);(2)3
【解析】試題分析:(1)根據(jù)不同年齡段的收看新聞的人數(shù)不同,故應(yīng)該和年齡有關(guān);(2)在100名電視觀眾中,收看新聞的觀眾共有45人,從中隨機抽取5名,抽樣比為,進(jìn)而由大于40歲的觀眾為27人,得到大于40歲的觀眾應(yīng)該抽取人數(shù).
(1)由于大于40歲的42人中有27人收看新聞節(jié)目,而20至40歲的58人中,只有18人收看新聞節(jié)目,故收看新聞節(jié)目的觀眾與年齡有關(guān).
(2)27×=3(名),所以大于40歲的觀眾應(yīng)抽取3名.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(-x2+x-1)ex,其中e是自然對數(shù)的底數(shù).
(1)求曲線f(x)在點(1,f(1))處的切線;
(2)若方程f(x)=x3+x2+m有3個不同的根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求方程的實數(shù)解;
(Ⅱ)如果數(shù)列滿足,(),是否存在實數(shù),使得對所有的都成立?證明你的結(jié)論.
(Ⅲ)在(Ⅱ)的條件下,設(shè)數(shù)列的前項的和為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,嵩山上原有一條筆直的山路BC,現(xiàn)在又新架設(shè)了一條索道AC,小李在山腳B處看索道AC,發(fā)現(xiàn)張角∠ABC=120°;從B處攀登400米到達(dá)D處,回頭看索道AC,發(fā)現(xiàn)張角∠ADC=150°;從D處再攀登800米方到達(dá)C處,則索道AC的長為________米.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市理論預(yù)測2000年到2004年人口總數(shù)與年份的關(guān)系如下表所示
年份200(年) | 0 | 1 | 2 | 3 | 4 |
人口數(shù) (十萬) | 5 | 7 | 8 | 11 | 19 |
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(3)據(jù)此估計2005年該城市人口總數(shù).
參考公式: 用最小二乘法求線性回歸方程系數(shù)公式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,左頂點為.
(1)求橢圓的方程;
(2)已知為坐標(biāo)原點, 是橢圓上的兩點,連接的直線平行交軸于點,證明: 成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一個圓柱形乒乓球筒,高為厘米,底面半徑為厘米.球筒的上底和下底分別粘有一個乒乓球,乒乓球與球筒底面及側(cè)面均相切(球筒和乒乓球厚度忽略不計).一個平面與兩乒乓球均相切,且此平面截球筒邊緣所得的圖形為一個橢圓,則該橢圓的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinωx·cosωx-cos2ωx(ω>0)的最小正周期為.
(1)求ω的值;
(2)在△ABC中,sinB,sinA,sinC成等比數(shù)列,求此時f(A)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com