【題目】拋物線的焦點(diǎn)為,在上存在,兩點(diǎn)滿足,且點(diǎn)軸上方,以為切點(diǎn)作的切線,與該拋物線的準(zhǔn)線相交于,則的坐標(biāo)為__________.

【答案】

【解析】

作出拋物線的準(zhǔn)線,設(shè)ABl上的射影分別是C、D,連接AC、BD,過BBEACE.由拋物線的定義結(jié)合題中的數(shù)據(jù),可算出RtABE中,cosBAE,得∠BAE60°,從而得到直線AB的方程,再與拋物線聯(lián)立,求得A點(diǎn)坐標(biāo),求得切線方程,與x=-1聯(lián)立,求得M的坐標(biāo).

作出拋物線的準(zhǔn)線lx=﹣1,設(shè)A、Bl上的射影分別是CD,

連接AC、BD,過BBEACE

3,∴設(shè)||m,則||3m,

由點(diǎn)AB分別在拋物線上,結(jié)合拋物線的定義,得

||||m,||||3m,

||2m

因此,RtABE中,cosBAE,得∠BAE60°

所以,直線AB的傾斜角∠AFx60°,

得直線AB的斜率ktan60°

直線AB的方程為yx1),代入y24x,可得3x210x+30,

x3x,

Ax軸上方,

A3,∴設(shè)過A的切線的斜率為m,則切線的方程為

聯(lián)立得到,,可得,

∴過A的切線的方程為,與x-1聯(lián)立可得

的坐標(biāo)為

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,假命題的是( )

A.一條直線與兩個(gè)平行平面中的一個(gè)相交,則必與另一個(gè)平面相交.

B.平行于同一平面的兩條直線一定平行.

C.如果平面不垂直于平面,那么平面內(nèi)一定不存在直線垂直于平面.

D.若直線不平行于平面,且不在平面內(nèi),則在平面內(nèi)不存在與平行的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn),定直線,動(dòng)圓經(jīng)過點(diǎn)且與直線相切.

(I)求動(dòng)圓圓心的軌跡方程;

(II)設(shè)點(diǎn)為曲線上不同的兩點(diǎn),且,過兩點(diǎn)分別作曲線的兩條切線,且二者相交于點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線,點(diǎn)在直線上.

1)若點(diǎn)的橫坐標(biāo)為2,求過點(diǎn)的圓的切線方程.

2)已知圓的半徑為2,求圓與圓的公共弦的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間進(jìn)行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實(shí)驗(yàn)室每天每100棵種子中的發(fā)芽數(shù),得到如下資料:

日期

121

122

123

124

125

溫差攝氏度

10

11

13

12

8

發(fā)芽

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)若選取的3組數(shù)據(jù)恰好是連續(xù)天的數(shù)據(jù)(表示數(shù)據(jù)來自互不相鄰的三天),求的分布列及期望:

(2)根據(jù)122日至4日數(shù)據(jù),求出發(fā)芽數(shù)關(guān)于溫差的線性回歸方程.由所求得線性回歸方稻得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問所得的線性回歸方程是否可靠?

附:參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的兩個(gè)焦點(diǎn),設(shè),分別是橢圓的上、下頂點(diǎn),且四邊形的面積為,其內(nèi)切圓周長(zhǎng)為.

(1)求橢圓的方程;

(2)當(dāng)時(shí),,為橢圓上的動(dòng)點(diǎn),且,試問:直線是否恒過一定點(diǎn)?若是,求出此定點(diǎn)坐標(biāo),若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】邊長(zhǎng)為的等邊三角形內(nèi)任一點(diǎn)到三邊距離之和為定值,這個(gè)定值等于;將這個(gè)結(jié)論推廣到空間是:棱長(zhǎng)為的正四面體內(nèi)任一點(diǎn)到各面距離之和等于________________.(具體數(shù)值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P(2,2),,過點(diǎn)P的動(dòng)直線l與圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).

(1)求點(diǎn)M的軌跡方程;

(2)當(dāng)|OP|=|OM|時(shí),l的方程及△POM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】改革開放以來,我國(guó)經(jīng)濟(jì)持續(xù)高速增長(zhǎng)如圖給出了我國(guó)2003年至2012年第二產(chǎn)業(yè)增加值與第一產(chǎn)業(yè)增加值的差值以下簡(jiǎn)稱為:產(chǎn)業(yè)差值的折線圖,記產(chǎn)業(yè)差值為單位:萬億元

求出y關(guān)于年份代碼t的線性回歸方程;

利用中的回歸方程,分析2003年至2012年我國(guó)產(chǎn)業(yè)差值的變化情況,并預(yù)測(cè)我國(guó)產(chǎn)業(yè)差值在哪一年約為34萬億元;

結(jié)合折線圖,試求出除去2007年產(chǎn)業(yè)差值后剩余的9年產(chǎn)業(yè)差值的平均值及方差結(jié)果精確到

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

樣本方差公式:

參考數(shù)據(jù):,

查看答案和解析>>

同步練習(xí)冊(cè)答案