【題目】已知橢圓的左焦點(diǎn)為,直線與圓交于,兩點(diǎn).
(1)若直線過(guò)點(diǎn),且,求被橢圓所截得的弦的長(zhǎng)度;
(2)若已知點(diǎn)在橢圓上,動(dòng)點(diǎn)滿足,請(qǐng)判斷點(diǎn)與圓的位置關(guān)系,并說(shuō)明理由.
【答案】(1);(2)點(diǎn)在圓上,理由見(jiàn)解析
【解析】
(1)根據(jù)圓的方程得到圓心坐標(biāo)和半徑,根據(jù),得到圓心到距離等于的距離,從而得到,得到的方程,從而求出被橢圓所截得的弦長(zhǎng);(2)直線與圓聯(lián)立,得到,,利用向量關(guān)系,得到的坐標(biāo),從而得到等于半徑的平方,從而得到點(diǎn)在圓上.
(1)圓,
則圓心,半徑為.
因?yàn)橄议L(zhǎng),
由勾股定理可得到的距離為2,
而,所以,即,代
入橢圓方程得到,
所以被橢圓所截得的弦長(zhǎng)為.
(2)點(diǎn)在圓上.
由
得.
設(shè),,
則,
從而.
因?yàn)?/span>,
所以
,
又因?yàn)辄c(diǎn)在橢圓上,
所以.
則
.
所以,點(diǎn)在圓上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,且橢圓過(guò)點(diǎn)
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與交于、兩點(diǎn),點(diǎn)在橢圓上,是坐標(biāo)原點(diǎn),若,判定四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的偶函數(shù)滿足,且,當(dāng)時(shí),.已知方程在區(qū)間上所有的實(shí)數(shù)根之和為.將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則__________,__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某芯片公司對(duì)今年新開(kāi)發(fā)的一批5G手機(jī)芯片進(jìn)行測(cè)評(píng),該公司隨機(jī)調(diào)查了100顆芯片,并將所得統(tǒng)計(jì)數(shù)據(jù)分為五個(gè)小組(所調(diào)查的芯片得分均在內(nèi)),得到如圖所示的頻率分布直方圖,其中.
(1)求這100顆芯片評(píng)測(cè)分?jǐn)?shù)的平均數(shù)(同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替).
(2)芯片公司另選100顆芯片交付給某手機(jī)公司進(jìn)行測(cè)試,該手機(jī)公司將每顆芯片分別裝在3個(gè)工程手機(jī)中進(jìn)行初測(cè)。若3個(gè)工程手機(jī)的評(píng)分都達(dá)到11萬(wàn)分,則認(rèn)定該芯片合格;若3個(gè)工程手機(jī)中只要有2個(gè)評(píng)分沒(méi)達(dá)到11萬(wàn)分,則認(rèn)定該芯片不合格;若3個(gè)工程手機(jī)中僅1個(gè)評(píng)分沒(méi)有達(dá)到11萬(wàn)分,則將該芯片再分別置于另外2個(gè)工程手機(jī)中進(jìn)行二測(cè),二測(cè)時(shí),2個(gè)工程手機(jī)的評(píng)分都達(dá)到11萬(wàn)分,則認(rèn)定該芯片合格;2個(gè)工程手機(jī)中只要有1個(gè)評(píng)分沒(méi)達(dá)到11萬(wàn)分,手機(jī)公司將認(rèn)定該芯片不合格.已知每顆芯片在各次置于工程手機(jī)中的得分相互獨(dú)立,并且芯片公司對(duì)芯片的評(píng)分方法及標(biāo)準(zhǔn)與手機(jī)公司對(duì)芯片的評(píng)分方法及標(biāo)準(zhǔn)都一致(以頻率作為概率).每顆芯片置于一個(gè)工程手機(jī)中的測(cè)試費(fèi)用均為300元,每顆芯片若被認(rèn)定為合格或不合格,將不再進(jìn)行后續(xù)測(cè)試,現(xiàn)手機(jī)公司測(cè)試部門預(yù)算的測(cè)試經(jīng)費(fèi)為10萬(wàn)元,試問(wèn)預(yù)算經(jīng)費(fèi)是否足夠測(cè)試完這100顆芯片?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,則實(shí)數(shù)a的取值范圍為( )
A. (0,1) B. C. D. (-∞,-2)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知雙曲線的左、右焦點(diǎn)分別為、,過(guò)右焦點(diǎn)作平行于一條漸近線的直線交雙曲線于點(diǎn),若的內(nèi)切圓半徑為,則雙曲線的離心率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠加工某種零件需要經(jīng)過(guò),,三道工序,且每道工序的加工都相互獨(dú)立,三道工序加工合格的概率分別為,,.三道工序都合格的零件為一級(jí)品;恰有兩道工序合格的零件為二級(jí)品;其它均為廢品,且加工一個(gè)零件為二級(jí)品的概率為.
(1)求;
(2)若該零件的一級(jí)品每個(gè)可獲利200元,二級(jí)品每個(gè)可獲利100元,每個(gè)廢品將使工廠損失50元,設(shè)一個(gè)零件經(jīng)過(guò)三道工序加工后最終獲利為元,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,則下列說(shuō)法中錯(cuò)誤的是( )
A.有個(gè)零點(diǎn)B.最小值為
C.在區(qū)間單調(diào)遞減D.的圖象關(guān)于軸對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與,重合),為線段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.
(1)證明:平面.
(2)三棱錐的體積最大時(shí),求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com