【題目】已知函數(shù) 若方程恰有三個實數(shù)根,則實數(shù)的取值范圍是_______.
【答案】
【解析】
令f(t)=2,解出t,則f(x)=t,討論k的符號,根據(jù)f(x)的函數(shù)圖象得出t的范圍即可.
解:令f(t)=2得t=﹣1或t(k≠0).
∵f(f(x))﹣2=0,∴f(f(x))=2,
∴f(x)=﹣1或f(x)(k≠0).
(1)當(dāng)k=0時,做出f(x)的函數(shù)圖象如圖所示:
由圖象可知f(x)=﹣1無解,即f(f(x))﹣2=0無解,不符合題意;
(2)當(dāng)k>0時,做出f(x)的函數(shù)圖象如圖所示:
由圖象可知f(x)=﹣1無解,f(x)無解,即f(f(x))﹣2=0無解,不符合題意;
(3)當(dāng)k<0時,做出f(x)的函數(shù)圖象如圖所示:
由圖象可知f(x)=﹣1有1解,
∵f(f(x))﹣2=0有3解,∴f(x)有2解,
∴1,解得﹣1<k.
綜上,k的取值范圍是(﹣1,].
故答案為:(﹣1,]
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,平面.
(1)證明:平面;
(2)過點作一平行于平面的截面,畫出該截面,說明理由,并求夾在該截面與平面之間的幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有A,B兩個投資項目,投資兩項目所獲得利潤分別是和(萬元),它們與投入資金(萬元)的關(guān)系依次是:其中與平方根成正比,且當(dāng)為4(萬元)時為1(萬元),又與成正比,當(dāng)為4(萬元)時也是1(萬元);某人甲有3萬元資金投資.
(Ⅰ)分別求出,與的函數(shù)關(guān)系式;
(Ⅱ)請幫甲設(shè)計一個合理的投資方案,使其獲利最大,并求出最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知偶函數(shù)在區(qū)間上單調(diào)遞增,且滿,給出下列判斷:
①;②在上是減函數(shù);③的圖象關(guān)于直線對稱;
④函數(shù)在處取得最大值;⑤函數(shù)沒有最小值
其中判斷正確的序號_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】央視傳媒為了解央視舉辦的“朗讀者”節(jié)目的收視時間情況,隨機(jī)抽取了某市名觀眾進(jìn)行調(diào)查,其中有名男觀眾和名女觀眾,將這名觀眾收視時間編成如圖所示的莖葉圖(單位:分鐘),收視時間在分鐘以上(包括分鐘)的稱為“朗讀愛好者”,收視時間在分鐘以下(不包括分鐘)的稱為“非朗讀愛好者”.
(1)若采用分層抽樣的方法從“朗讀愛好者”和“非朗讀愛好者”中隨機(jī)抽取名,再從這名觀眾中任選名,求至少選到名“朗讀愛好者”的概率;
(2)若從收視時間在40分鐘以上(包括40分鐘)的所有觀眾中選出男、女觀眾各1名,求選出的這兩名觀眾時間相差5分鐘以上的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線上的點均在曲線外,且對上任意一點,到直線的距離等于該點與曲線上點的距離的最小值.
(1)求動點的軌跡的方程;
(2)過點的直線與曲線交于不同的兩點、,過點的直線與曲線交于另一點,且直線過點,求證:直線過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中:
①定義在R上的函數(shù)f(x)在區(qū)間(-∞,0]上是增函數(shù),在區(qū)間[0,+∞)上也是增函數(shù),則函數(shù)f(x)在R上是增函數(shù);②若f(2)=f(-2),則函數(shù)f(x)不是奇函數(shù);③函數(shù)y=x-0.5是(0,1)上的減函數(shù);④對應(yīng)法則和值域相同的函數(shù)的定義域也相同;⑤若x0是二次函數(shù)y=f(x)的零點,且m<x0<n,那么f(m)f(n)<0一定成立.
寫出上述所有正確結(jié)論的序號:_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的一段圖像如圖所示.
(1)求此函數(shù)的解析式;
(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com