若△ABC的定點(diǎn)B,C的坐標(biāo)分別為(-4,0),(4,0),AC、AB邊上的中線長(zhǎng)之和為15,則△ABC的重心G的軌跡方程為
 
考點(diǎn):軌跡方程
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)三角形重心的性質(zhì)可得G到B、C兩點(diǎn)的距離之和等于10,因此G的軌跡為以B、C為焦點(diǎn)的橢圓.利用題中數(shù)據(jù)加以計(jì)算可得相應(yīng)的橢圓方程,注意到點(diǎn)G不能落在x軸上得到答案.
解答: 解:設(shè)AC、AB邊上的中線分別為CD、BE
∵BG=
2
3
BE,CG=
2
3
CD
∴BG+CG=
2
3
(BE+CD)=10(定值)>8
因此,G的軌跡為以B、C為焦點(diǎn)的橢圓,2a=10,c=4
∴a=5,b=3,可得橢圓的方程為
x2
25
+
y2
9
=1

∵當(dāng)G點(diǎn)在x軸上時(shí),A、B、C三點(diǎn)共線,不能構(gòu)成△ABC
∴G的縱坐標(biāo)不能是0,可得△ABC的重心G的軌跡方程為
x2
25
+
y2
9
=1
(y≠0)
故答案為:
x2
25
+
y2
9
=1
(y≠0).
點(diǎn)評(píng):本題給出三角形兩條中線長(zhǎng)度之和等于定值,求重心G的軌跡方程.著重考查了三角形重心的性質(zhì)、橢圓的定義與標(biāo)準(zhǔn)方程和軌跡方程的求法等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z=
1+2i
3-4i
(i為虛數(shù)單位),則|
.
z
|
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是偶函數(shù),對(duì)任意的a,b∈[0,+∞)都有
f(a)-f(b)
a-b
<0
,若f(lgx)>f(1),則x的取值范圍是( 。
A、、(
1
10
,1)
B、(0,
1
10
)∪(1,+∞)
C、(
1
10
,10)
D、(0,1)∪(10,+∞x1x2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
(2-a)x+1,x<1
a2,x≥1
在R上單調(diào)遞增,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(x-
π
4
)

(1)求函數(shù)y=f(x)的對(duì)稱軸方程;
(2)求此函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(
3
2
)-
1
3
×(-
4
5
)0+8
1
4
×
42
+(
32
×
3
)6-
(-
2
3
)
2
3
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)z=
i
1-i
+i2013
表示的點(diǎn)所在的象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,如果b=a-4,c=2b-a,又知△ABC中最大內(nèi)角為120°,那么a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)數(shù)方程log2(x2-6x+6)=1+log2(x-3)的解是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案