已知等差數(shù)列{an}的前n項和為Sn,n∈N*,且滿足a2+a4=14,S7=70.
(1)求數(shù)列{an}的通項公式;
(2)若bn=,則數(shù)列{bn}的最小項是第幾項,并求該項的值.
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第6課時練習卷(解析版) 題型:解答題
已知數(shù)列{an}中,a1=2,n∈N*,an>0,數(shù)列{an}的前n項和為Sn,且滿足an+1=.
(1)求{Sn}的通項公式;
(2)設{bk}是{Sn}中的按從小到大順序組成的整數(shù)數(shù)列.
①求b3;
②存在N(N∈N*),當n≤N時,使得在{Sn}中,數(shù)列{bk}有且只有20項,求N的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第3課時練習卷(解析版) 題型:解答題
已知數(shù)列{an}的首項a1=2a+1(a是常數(shù),且a≠-1),
an=2an-1+n2-4n+2(n≥2),數(shù)列{bn}的首項b1=a,
bn=an+n2(n≥2).
(1)證明:{bn}從第2項起是以2為公比的等比數(shù)列;
(2)設Sn為數(shù)列{bn}的前n項和,且{Sn}是等比數(shù)列,求實數(shù)a的值;
(3)當a>0時,求數(shù)列{an}的最小項.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第3課時練習卷(解析版) 題型:填空題
等比數(shù)列{an}中,a1>0,a2a4+2a3a5+a4a6=36,則a3+a5=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第2課時練習卷(解析版) 題型:填空題
設等差數(shù)列{an}的前n項和為Sn,Sm-1=-2,Sm=0,Sm+1=3,則m=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第2課時練習卷(解析版) 題型:解答題
設等差數(shù)列{an}的前n項和為Sn,且S4=-62,S6=-75,求:
(1){an}的通項公式an及其前n項和Sn;
(2)|a1|+|a2|+|a3|+…+|a14|.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第1課時練習卷(解析版) 題型:解答題
若數(shù)列{an}滿足an+1=an+an+2(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”.
(1)設數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫出該數(shù)列的前6項,并求出前6項之和;
(2)在“凸數(shù)列”{an}中,求證:an+3=-an,n∈N*;
(3)設a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前2011項和S2011.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第二章第9課時練習卷(解析版) 題型:填空題
若函數(shù)f(x)=log2|ax-1|(a>0),當x≠時,有f(x)=f(1-x),則a=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第二章第7課時練習卷(解析版) 題型:填空題
已知函數(shù)f(x)=則f(2+log23)=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com