【題目】已知橢圓C: =1(a>b>0)的離心率為 ,F(xiàn)1、F2分別是橢圓的左、右焦點,M為橢圓上除長軸端點外的任意一點,且△MF1F2的周長為4+2
(1)求橢圓C的方程;
(2)過點D(0,﹣2)作直線l與橢圓C交于A、B兩點,點N滿足 (O為原點),求四邊形OANB面積的最大值,并求此時直線l的方程.

【答案】
(1)解:由離心率為e= = ,①

則△MF1F2的周長l=2a+2c=4+2 ,則a+c=2+ ,②

則a=2,c=

則b2=a2﹣c2=1,

∴橢圓C的方程


(2)解:由 ,則四邊形OANB為平行四邊形,

當直線l的斜率不存在時顯然不符合題意;

當直線l的斜率存在時,設(shè)直線l的方程為y=kx﹣2,l與橢圓交于A(x1,y1),B(x2,y2)兩點,由 得(1+4k2)x2﹣16kx+12=0

由△=162k2﹣48(1+4k2)>0,得k2 ∴x1+x2= ,x1x2=

∵SOAB= 丨OD丨丨x1﹣x2丨=丨x1﹣x2丨,

∴四邊形OANB面積S=2SOAB=2丨x1﹣x2丨=2

=2 ,

=2 ,

=8 ,

令4k2﹣3=t,則4k2=t+3(由上可知t>0),S=8 =8 ≤8 =8 =2,

當且僅當t=4,即k2= 時取等號;

∴當k=± ,平行四邊形OANB面積的最大值為2,

此時直線l的方程為y=± x﹣2


【解析】(1)利用橢圓的離心率公式及焦點三角形的周長公式,求得a和c的值,b2=a2﹣c2span>=1,即可求得橢圓方程;(2)確定四邊形OANB為平行四邊形,則SOANB=2SOAB , 表示出面積,利用基本不等式,即可求得最大值,從而可得直線l的方程.
【考點精析】本題主要考查了橢圓的標準方程的相關(guān)知識點,需要掌握橢圓標準方程焦點在x軸:,焦點在y軸:才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機構(gòu)用簡單隨機抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如表.

非一線

一線

總計

愿生

45

20

65

不愿生

13

22

35

總計

58

42

100

附表:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

由K2= 算得,K2= ≈9.616參照附表,得到的正確結(jié)論是(
A.在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別有關(guān)”
B.在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別無關(guān)”
C.有99%以上的把握認為“生育意愿與城市級別有關(guān)”
D.有99%以上的把握認為“生育意愿與城市級別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)雙曲線 (a>0,b>0)的左焦點為F1 , 左頂點為A,過F1作x軸的垂線交雙曲線于P、Q兩點,過P作PM垂直QA于M,過Q作QN垂直PA于N,設(shè)PM與QN的交點為B,若B到直線PQ的距離大于a+ ,則該雙曲線的離心率取值范圍是(
A.(1﹣
B.( ,+∞)
C.(1,2
D.(2 ,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 是自然對數(shù)的底數(shù), .
(1)求函數(shù) 的單調(diào)遞增區(qū)間;
(2)若 為整數(shù), ,且當 時, 恒成立,其中 的導函數(shù),求 的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一個以A1B1C1為底面的直三棱柱被一平面所截得到的幾何體,截面為ABC,已知A1B1B1C1=2,A1B1C1=90°,AA1=4,BB1=3,CC1=2,求:

()該幾何體的體積;

()截面ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓的右焦點為,右頂點為,已知,其中為原點,為橢圓的離心率.

(1)求橢圓的方程;

(2)設(shè)過點的直線與橢圓交于點不在軸上),垂直于的直線與交于點,與軸交于點,若,且,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(選修4﹣4:坐標系與參數(shù)方程)
已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sinθ.
(1)把C1的參數(shù)方程化為極坐標方程;
(2)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩地相距,汽車從甲地行駛到乙地,速度不得超過,已知汽車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度 ()的平方成正比,比例系數(shù)為,固定部分為元,

(1)把全程運輸成本(元)表示為速度()的函數(shù),指出定義域;

(2)為了使全程運輸成本最小,汽車應(yīng)以多大速度行駛?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知x>0,由不等式x+ ≥2 =2,x+ = ≥3 =3,…,可以推出結(jié)論:x+ ≥n+1(n∈N*),則a=(
A.2n
B.3n
C.n2
D.nn

查看答案和解析>>

同步練習冊答案