已知a>0,b>0,且h=min {a,  
b
a2+4b2
}
,其中min{a,b}表示數(shù)a,b中較小的數(shù),則h的最大值為
1
2
1
2
分析:將兩個(gè)數(shù)a與
b
a2+4b2
相乘,得到
ab
a2+4b2
=
1
a
b
+
4b
a
,運(yùn)用基本不等式得到這個(gè)積的最大值為
1
4
,再根據(jù)a與
b
a2+4b2
兩個(gè)數(shù)都是正數(shù),討論得當(dāng)且僅當(dāng)兩個(gè)正數(shù)相等時(shí),它們當(dāng)中的較小數(shù)取最大值,可得正確答案.
解答:解:∵a>0,b>0
a•
b
a2+4b2
=
ab
a2+4b2
>0

ab
a2+4b2
=
1
a
b
+
4b
a
a
b
+
4b
a
≥ 2
a
b
 •
4b
a
=4

ab
a2+4b2
1
4
,當(dāng)且僅當(dāng)a=2b時(shí),取等號
∵a與
b
a2+4b2
兩個(gè)數(shù)都是正數(shù),且積為
1
4

∴當(dāng)a=2b=
1
2
,即a=
1
2
,b=
1
4
時(shí),a與
b
a2+4b2
相等且為
1
2
,
當(dāng)a≠2b時(shí),a與
b
a2+4b2
不相等,且較小的數(shù)小于
1
2
,較大的數(shù)大于
1
2

所以,當(dāng)a=2b=
1
2
,即a=
1
2
,b=
1
4
時(shí),時(shí)h=min {a, 
b
a2+4b2
}
的值最大
且這個(gè)最大值為
1
2

故答案為:
1
2
點(diǎn)評:本題以函數(shù)的最值為載體,考查了基本不等式求最值和函數(shù)的最值及其幾何意義等知識(shí)點(diǎn),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,且ab=1,α=a+
4
a
,β=b+
4
b
,則α+β的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)在平面直角坐標(biāo)系xOy中,判斷曲線C:
x=2cosθ
y=sinθ
(θ為參數(shù))與直線l:
x=1+2t
y=1-t
(t為參數(shù))是否有公共點(diǎn),并證明你的結(jié)論.
(2)已知a>0,b>0,a+b=1,求證:
1
2a+1
+
4
2b+1
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•松江區(qū)二模)已知雙曲線C的中心在原點(diǎn),D(1,0)是它的一個(gè)頂點(diǎn),
d
=(1,
2
)
是它的一條漸近線的一個(gè)方向向量.
(1)求雙曲線C的方程;
(2)若過點(diǎn)(-3,0)任意作一條直線與雙曲線C交于A,B兩點(diǎn) (A,B都不同于點(diǎn)D),求證:
DA
DB
為定值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點(diǎn),M,N為雙曲線Γ上的兩點(diǎn)(都不同于點(diǎn)E),且EM⊥EN,那么直線MN是否過定點(diǎn)?若是,請求出此定點(diǎn)的坐標(biāo);若不是,說明理由.然后在以下三個(gè)情形中選擇一個(gè),寫出類似結(jié)論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點(diǎn);
情形二:拋物線y2=2px(p>0)及它的頂點(diǎn);
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,a+b=1,則a+
1
a
+b+
1
b
的最小值為
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:松江區(qū)二模 題型:解答題

已知雙曲線C的中心在原點(diǎn),D(1,0)是它的一個(gè)頂點(diǎn),
d
=(1,
2
)
是它的一條漸近線的一個(gè)方向向量.
(1)求雙曲線C的方程;
(2)若過點(diǎn)(-3,0)任意作一條直線與雙曲線C交于A,B兩點(diǎn) (A,B都不同于點(diǎn)D),求證:
DA
DB
為定值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點(diǎn),M,N為雙曲線Γ上的兩點(diǎn)(都不同于點(diǎn)E),且EM⊥EN,那么直線MN是否過定點(diǎn)?若是,請求出此定點(diǎn)的坐標(biāo);若不是,說明理由.然后在以下三個(gè)情形中選擇一個(gè),寫出類似結(jié)論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點(diǎn);
情形二:拋物線y2=2px(p>0)及它的頂點(diǎn);
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案