(2012•山東)在某次測(cè)量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對(duì)應(yīng)相同的是(  )
分析:利用眾數(shù)、平均數(shù)、中位標(biāo)準(zhǔn)差的定義,分別求出,即可得出答案.
解答:解:A樣本數(shù)據(jù):82,84,84,86,86,86,88,88,88,88.
B樣本數(shù)據(jù)84,86,86,88,88,88,90,90,90,90
眾數(shù)分別為88,90,不相等,A錯(cuò).
平均數(shù)86,88不相等,B錯(cuò).
中位數(shù)分別為86,88,不相等,C錯(cuò)
A樣本方差S2=
1
10
[(82-86)2+2×(84-86)2+3×(86-86)2+4×(88-86)2]=4,標(biāo)準(zhǔn)差S=2,
B樣本方差S2=
1
10
[(84-88)2+2×(86-88)2+3×(88-88)2+4×(90-88)2]=4,標(biāo)準(zhǔn)差S=2,D正確
故選D.
點(diǎn)評(píng):本題考查眾數(shù)、平均數(shù)、中位標(biāo)準(zhǔn)差的定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•山東)在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知sinB(tanA+tanC)=tanAtanC.
(Ⅰ)求證:a,b,c成等比數(shù)列;
(Ⅱ)若a=1,c=2,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•山東)在平面直角坐標(biāo)系xOy中,F(xiàn)是拋物線C:x2=2py(p>0)的焦點(diǎn),M是拋物線C上位于第一象限內(nèi)的任意一點(diǎn),過(guò)M,F(xiàn),O三點(diǎn)的圓的圓心為Q,點(diǎn)Q到拋物線C的準(zhǔn)線的距離為
3
4

(Ⅰ)求拋物線C的方程;
(Ⅱ)是否存在點(diǎn)M,使得直線MQ與拋物線C相切于點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由;
(Ⅲ)若點(diǎn)M的橫坐標(biāo)為
2
,直線l:y=kx+
1
4
與拋物線C有兩個(gè)不同的交點(diǎn)A,B,l與圓Q有兩個(gè)不同的交點(diǎn)D,E,求當(dāng)
1
2
≤k≤2時(shí),|AB|2+|DE|2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•山東)在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,F(xiàn)C⊥平面ABCD,AE⊥BD,CB=CD=CF.
(Ⅰ)求證:BD⊥平面AED;
(Ⅱ)求二面角F-BD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•山東)在等差數(shù)列{an}中,a3+a4+a5=84,a9=73.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)對(duì)任意m∈N*,將數(shù)列{an}中落入?yún)^(qū)間(9m,92m)內(nèi)的項(xiàng)的個(gè)數(shù)記為bm,求數(shù)列{bm}的前m項(xiàng)和Sm

查看答案和解析>>

同步練習(xí)冊(cè)答案