【題目】已知函數(shù)yAsin(ωx+φ)(A>0,ω>0,|φ|<π)的一段圖象如圖所示

(1)求此函數(shù)的解析式;

(2)求此函數(shù)在(﹣2π,2π)上的遞增區(qū)間.

【答案】(1)y=2sin(x;(2)(﹣2π,﹣6)和[2,2π).

【解析】

(1)根據(jù)三角函數(shù)的圖象求出A,ω,φ,即可確定函數(shù)的解析式;

(2)根據(jù)函數(shù)的表達(dá)式,即可求函數(shù)fx)的單調(diào)遞增區(qū)間;

(1)由函數(shù)的圖象可知A,,

∴周期T=16,

T16,

∴ω,

y=2sin(x+φ),

∵函數(shù)的圖象經(jīng)過(2,﹣2),

φ=2kπ,

φ

又|φ|<π,

φ

∴函數(shù)的解析式為:y=2sin(x).

(2)由已知得,

得16k+2≤x≤16k+10,

即函數(shù)的單調(diào)遞增區(qū)間為[16k+2,16k+10],k∈Z.

當(dāng)k=﹣1時,為[﹣14,﹣6],

當(dāng)k=0時,為[2,10],

x∈(﹣2π,2π),

∴函數(shù)在(﹣2π,2π)上的遞增區(qū)間為(﹣2π,﹣6)和[2,2π).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過P(2,1)且兩兩互相垂直的直線l1 , l2分別交橢圓 + =1于A,B與C,D.
(1)求|PA||PB|的最值;
(2)求證: + 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓,動圓與圓外切并且與圓內(nèi)切,圓心軌跡為曲線

(1)求曲線的方程;

(2)若是曲線上關(guān)于軸對稱的兩點(diǎn),點(diǎn),直線交曲線

于另一點(diǎn),求證:直線過定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD的面積為4,如果矩形的周長不大于10,則稱此矩形是“美觀矩形”.

(1)當(dāng)矩形ABCD是“美觀矩形”時,求矩形周長的取值范圍;

(2)就矩形ABCD的一邊長x的不同值,討論矩形是否是“美觀矩形”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=的圖象與函數(shù)y=2sinπx(﹣3≤x≤5)的圖象所有交點(diǎn)的橫坐標(biāo)之和等于( )

A.2 B.4 C.6 D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為定義在上的奇函數(shù),且當(dāng)時,

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)求函數(shù)在區(qū)間 上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ) 的部分圖象如圖所示,若 ,且f(x1)=f(x2)(x1≠x2),則f(x1+x2)=(
A.1
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)對稱軸方程為,在上的奇函數(shù)滿足:當(dāng)時,.

(1)求函數(shù)的解析式;

(2)判斷方程的根的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,點(diǎn)坐標(biāo)是,曲線的方程為;以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,斜率是的直線經(jīng)過點(diǎn)

(1)寫出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;

(2)求證直線和曲線相交于兩點(diǎn),并求的值.

查看答案和解析>>

同步練習(xí)冊答案