【題目】過(guò)拋物線y2=4x的焦點(diǎn)的直線l與拋物線交于AB兩點(diǎn),設(shè)點(diǎn)M3,0.若△MAB的面積為,則|AB|=( )

A.2B.4C.D.8

【答案】D

【解析】

設(shè)直線l的方程為x=ty+1,將直線與拋物線聯(lián)立,利用韋達(dá)定理以及弦長(zhǎng)公式表示出|AB|,根據(jù)三角形的面積求出|y1y2|=4,代入計(jì)算即可求解.

拋物線y2=4x的焦點(diǎn)F為(1,0),

可設(shè)直線l的方程為x=ty+1,

代入拋物線方程,可得y24ty4=0,

設(shè)Ax1y1),Bx2,y2),可得y1+y2=4ty1y2=﹣4,

則|AB|.|y1y2| . .,

MAB的面積為|MF|.|y1y2|2|y1y2|=4,

4,解得t1,

則|AB| .8,

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖中,,,分別是、的中點(diǎn),將沿折起連結(jié)、,得到多面體.

1)證明:在多面體中,;

2)在多面體中,當(dāng)時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測(cè)如下:

甲說(shuō):作品獲得一等獎(jiǎng)”; 乙說(shuō):作品獲得一等獎(jiǎng)”;

丙說(shuō):兩件作品未獲得一等獎(jiǎng)”; 丁說(shuō):作品獲得一等獎(jiǎng)”.

評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某部門(mén)在上班高峰時(shí)段對(duì)甲、乙兩座地鐵站各隨機(jī)抽取了50名乘客,統(tǒng)計(jì)其乘車(chē)等待時(shí)間(指乘客從進(jìn)站口到乘上車(chē)的時(shí)間,單位:分鐘)將統(tǒng)計(jì)數(shù)據(jù)按,,…,分組,制成頻率分布直方圖如圖所示:

1)求a的值;

2)記A表示事件“在上班高峰時(shí)段某乘客在甲站乘車(chē)等待時(shí)間少于20分鐘”試估計(jì)A的概率;

3)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間左端點(diǎn)值來(lái)估計(jì),記在上班高峰時(shí)段甲、乙兩站各抽取的50名乘客乘車(chē)的平均等待時(shí)間分別為,求的值,并直接寫(xiě)出的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.

(1)證明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為實(shí)現(xiàn)2020年全面建設(shè)小康社會(huì),某地進(jìn)行產(chǎn)業(yè)的升級(jí)改造.經(jīng)市場(chǎng)調(diào)研和科學(xué)研判,準(zhǔn)備大規(guī)模生產(chǎn)某高科技產(chǎn)品的一個(gè)核心部件,目前只有甲、乙兩種設(shè)備可以獨(dú)立生產(chǎn)該部件.如圖是從甲設(shè)備生產(chǎn)的部件中隨機(jī)抽取400件,對(duì)其核心部件的尺寸x,進(jìn)行統(tǒng)計(jì)整理的頻率分布直方圖.

根據(jù)行業(yè)質(zhì)量標(biāo)準(zhǔn)規(guī)定,該核心部件尺寸x滿足:|x12|≤1為一級(jí)品,1<|x12|≤2為二級(jí)品,|x12|>2為三級(jí)品.

(Ⅰ)現(xiàn)根據(jù)頻率分布直方圖中的分組,用分層抽樣的方法先從這400件樣本中抽取40件產(chǎn)品,再?gòu)乃槿〉?/span>40件產(chǎn)品中,抽取2件尺寸x∈[12,15]的產(chǎn)品,記ξ為這2件產(chǎn)品中尺寸x∈[14,15]的產(chǎn)品個(gè)數(shù),求ξ的分布列和數(shù)學(xué)期望;

(Ⅱ)將甲設(shè)備生產(chǎn)的產(chǎn)品成箱包裝出售時(shí),需要進(jìn)行檢驗(yàn).已知每箱有100件產(chǎn)品,每件產(chǎn)品的檢驗(yàn)費(fèi)用為50.檢驗(yàn)規(guī)定:若檢驗(yàn)出三級(jí)品需更換為一級(jí)或二級(jí)品;若不檢驗(yàn),讓三級(jí)品進(jìn)入買(mǎi)家,廠家需向買(mǎi)家每件支付200元補(bǔ)償.現(xiàn)從一箱產(chǎn)品中隨機(jī)抽檢了10件,結(jié)果發(fā)現(xiàn)有1件三級(jí)品.若將甲設(shè)備的樣本頻率作為總體的慨率,以廠家支付費(fèi)用作為決策依據(jù),問(wèn)是否對(duì)該箱中剩余產(chǎn)品進(jìn)行一一檢驗(yàn)?請(qǐng)說(shuō)明理由;

(Ⅲ)為加大升級(jí)力度,廠家需增購(gòu)設(shè)備.已知這種產(chǎn)品的利潤(rùn)如下:一級(jí)品的利潤(rùn)為500元/件;二級(jí)品的利潤(rùn)為400元/件;三級(jí)品的利潤(rùn)為200元/件.乙種設(shè)備產(chǎn)品中一、二、三級(jí)品的概率分別是,.若將甲設(shè)備的樣本頻率作為總體的概率,以廠家的利潤(rùn)作為決策依據(jù).應(yīng)選購(gòu)哪種設(shè)備?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面平面,的中點(diǎn),上一點(diǎn),且

1)求證:平面;

2)若求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某土特產(chǎn)超市為預(yù)估2020年元旦期間游客購(gòu)買(mǎi)土特產(chǎn)的情況,對(duì)2019年元旦期間的90位游客購(gòu)買(mǎi)情況進(jìn)行統(tǒng)計(jì),得到如下人數(shù)分布表.

(1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認(rèn)為購(gòu)買(mǎi)金額是否少于60元與性別有關(guān).

(2)為吸引游客,該超市推出一種優(yōu)惠方案,購(gòu)買(mǎi)金額不少于60元可抽獎(jiǎng)3次,每次中獎(jiǎng)概率為p(每次抽獎(jiǎng)互不影響,且p的值等于人數(shù)分布表中購(gòu)買(mǎi)金額不少于60元的頻率),中獎(jiǎng)1次減5元,中獎(jiǎng)2次減10元,中獎(jiǎng)3次減15.若游客甲計(jì)劃購(gòu)買(mǎi)80元的土特產(chǎn),請(qǐng)列出實(shí)際付款數(shù)X()的分布列并求其數(shù)學(xué)期望.

:參考公式和數(shù)據(jù):,.

附表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,底面是邊長(zhǎng)為4的正方形,為正三角形,的中點(diǎn),過(guò)的平面平行于平面,且平面與平面的交線為,與平面的交線為

1)在圖中作出四邊形(不必說(shuō)出作法和理由);

2)若,求平面與平面形成的銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案