【題目】如圖所示,、是兩個垃圾中轉站,的正東方向千米處,的南面為居民生活區(qū).為了妥善處理生活垃圾,政府決定在的北面建一個垃圾發(fā)電廠.垃圾發(fā)電廠的選址擬滿足以下兩個要求(、可看成三個點):①垃圾發(fā)電廠到兩個垃圾中轉站的距離與它們每天集中的生活垃圾量成反比,比例系數(shù)相同;②垃圾發(fā)電廠應盡量遠離居民區(qū)(這里參考的指標是點到直線的距離要盡可能大).現(xiàn)估測得兩個中轉站每天集中的生活垃圾量分別約為噸和噸.設

1)求(用的表達式表示);

2)垃圾發(fā)電廠該如何選址才能同時滿足上述要求?

【答案】1;(2)選址應滿足千米,千米.

【解析】

1)由條件可得,,運用余弦定理,即可得到;

2)由同角的平方關系可得,求得點到直線的距離,化簡整理配方,由二次函數(shù)的最值的求法,即可得到所求最大值及的值.

1)由條件①,得,,,

;

2,

所以點到直線的距離,

,,

所以當,即時,取得最大值千米,

即選址應滿足千米,千米.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若數(shù)列滿足則稱數(shù)列.

1)若數(shù)列,試寫出的所有可能值;

2)若數(shù)列,且的最大值;

3)對任意給定的正整數(shù)是否存在數(shù)列使得?若存在,寫出滿足條件的一個數(shù)列;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的定義域為恰是不等式的解集,其值域為,函數(shù)的定義域為,值域為.

1)求函數(shù)定義域為和值域;

2)是否存在負實數(shù),使得成立?若存在,求負實數(shù)的取值范圍;若不存在,請說明理由;

3)若函數(shù)在定義域上單調遞減,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在一條景觀道的一端有一個半徑為米的圓形摩天輪O,逆時針分鐘轉一圈,從處進入摩天輪的座艙,垂直于地面,在距離米處設置了一個望遠鏡.

1)同學甲打算獨自乘坐摩天輪,但是其母親不放心,于是約定在登上摩天輪座艙分鐘后,在座艙內向其母親揮手致意,而其母親則在望遠鏡中仔細觀看.問望遠鏡的仰角應調整為多少度?(精確到1度)

2)在同學甲向其母親揮手致意的同時,同一座艙的另一名乘客乙在拍攝地面上的一條綠化帶,發(fā)現(xiàn)取景的視角恰為,求綠化帶的長度(精確到1米)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)有800名學員參加交通法規(guī)考試,考試成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:,,,,,規(guī)定90分及以上為合格:

(1)求圖中a的值;

(2)根據(jù)頻率分布直方圖估計該地區(qū)學員交通法規(guī)考試合格的概率;

(3)若三個人參加交通法規(guī)考試,估計這三個人至少有兩人合格的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第七屆世界軍人運動會于20191018日至20191027日在中國武漢舉行,第七屆世界軍人運動會是我國第一次承辦的綜合性國際軍事體育賽事,也是繼北京奧運會之后我國舉辦的規(guī)模最大的國際體育盛會.來自109個國家的9300余名軍體健兒在江城武漢同場競技、增進友誼.運動會共設置射擊、游泳、田徑、籃球等27個大項、329個小項.經(jīng)過激烈角逐,獎牌榜的前6名如下:

某大學德語系同學利用分層抽樣的方式從德國獲獎選手中抽取了9名獲獎代表.

1)請問這9名獲獎代表中獲金牌、銀牌、銅牌的人數(shù)分別是多少人?

2)從這9人中隨機抽取3人,記這3人中銀牌選手的人數(shù)為,求的分布列和期望;

3)從這9人中隨機抽取3人,求已知這3人中有獲金牌運動員的前提下,這3人中恰好有1人為獲銅牌運動員的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設直線系),則下列命題中是真命題的個數(shù)是( 。

①存在一個圓與所有直線相交;

②存在一個圓與所有直線不相交;

③存在一個圓與所有直線相切;

中所有直線均經(jīng)過一個定點;

⑤不存在定點不在中的任一條直線上;

⑥對于任意整數(shù),存在正邊形,其所有邊均在中的直線上;

中的直線所能圍成的正三角形面積都相等.

A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角中,,點在線段.

(Ⅰ) ,求的長;

)若點在線段上,且,問:當取何值時,的面積最?并求出面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)試判斷函數(shù)的單調性;

2)若函數(shù)上有且僅有一個零點,

①求證:此零點是的極值點;

②求證:.

(本題可能會用到的數(shù)據(jù):

查看答案和解析>>

同步練習冊答案