【題目】蘋果是人們?nèi)粘I钪谐R姷臓I養(yǎng)型水果.某地水果批發(fā)市場銷售來自5個不同產(chǎn)地的富士蘋果,各產(chǎn)地的包裝規(guī)格相同,它們的批發(fā)價格(元/箱)和市場份額如下:

產(chǎn)地

批發(fā)價格

市場份額

市場份額亦稱“市場占有率”.指某一產(chǎn)品的銷售量在市場同類產(chǎn)品中所占比重.

(1)從該地批發(fā)市場銷售的富士蘋果中隨機(jī)抽取一箱,求該箱蘋果價格低于元的概率;

(2)按市場份額進(jìn)行分層抽樣,隨機(jī)抽取箱富士蘋果進(jìn)行檢驗,

①從產(chǎn)地共抽取箱,求的值;

②從這箱蘋果中隨機(jī)抽取兩箱進(jìn)行等級檢驗,求兩箱產(chǎn)地不同的概率;

(3)由于受種植規(guī)模和蘋果品質(zhì)的影響,預(yù)計明年產(chǎn)地的市場份額將增加,產(chǎn)地的市場份額將減少,其它產(chǎn)地的市場份額不變,蘋果銷售價格也不變(不考慮其它因素).設(shè)今年蘋果的平均批發(fā)價為每箱元,明年蘋果的平均批發(fā)價為每箱元,比較的大小.(只需寫出結(jié)論)

【答案】(1)0.60;(2);(3)

【解析】

(1)價格低于元的概率等價于價格低于元的市場占有率之和;

(2)①根據(jù)分層抽樣的計算公式進(jìn)行計算,可得出從產(chǎn)地共抽出的箱數(shù);

②將5箱進(jìn)行編號,列舉出選擇兩箱的所有可能,然后根據(jù)古典概型計算公式進(jìn)行求解;

(3)根據(jù)平均值計算公式進(jìn)行估算。

(1)設(shè)事件:“從該地批發(fā)市場銷售的富士蘋果中隨機(jī)抽取一箱,該箱蘋果價格低于160 元”.

由題意可得:=0.15+0.25+0.20=0.60 .

(2)①地抽取地抽取

所以 .

②設(shè)地抽取的3箱蘋果分別記為;地抽取的2箱蘋果分別記為,

從這5箱中抽取2箱共有10種抽取方法.

,

來自不同產(chǎn)地共有6種.

所以從這箱蘋果中隨機(jī)抽取兩箱進(jìn)行等級檢驗,兩箱產(chǎn)地不同的概率為: .

(3)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,長半軸長與短半軸長的比值為.

1)求橢圓的方程;

2)設(shè)經(jīng)過點的直線與橢圓相交于不同的兩點,.若點在以線段為直徑的圓上,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,設(shè),且,記;

(1)設(shè),其中,試求的單調(diào)區(qū)間;

(2)試判斷弦的斜率的大小關(guān)系,并證明;

(3)證明:當(dāng)時,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間及極值;

(2)設(shè)時,存在,使方程成立,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查民眾對國家實行新農(nóng)村建設(shè)政策的態(tài)度,現(xiàn)通過網(wǎng)絡(luò)問卷隨機(jī)調(diào)查了年齡在20周歲至80周歲的100人,他們年齡頻數(shù)分布和支持新農(nóng)村建設(shè)人數(shù)如下表:

(1)根據(jù)上述統(tǒng)計數(shù)據(jù)填下面的2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為以50歲為分界點對新農(nóng)村建設(shè)政策的支持度有差異;

(2)為了進(jìn)一步推動新農(nóng)村建設(shè)政策的實施,中央電視臺某節(jié)目對此進(jìn)行了專題報道,并在節(jié)目最后利用隨機(jī)撥號的形式在全國范圍內(nèi)選出4名幸運(yùn)觀眾(假設(shè)年齡均在20周歲至80周歲內(nèi)),給予適當(dāng)?shù)莫剟睿粢灶l率估計概率,記選出4名幸運(yùn)觀眾中支持新農(nóng)村建設(shè)人數(shù)為,試求隨機(jī)變量的分布列和數(shù)學(xué)期望.

參考數(shù)據(jù):

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心在射線上,截直線所得的弦長為6,且與直線相切.

(1)求圓的方程;

(2)已知點,在直線上是否存在點(異于點),使得對圓上的任一點,都有為定值?若存在,請求出點的坐標(biāo)及的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 是奇函數(shù).

1)求實數(shù)的值;

2)判斷函數(shù)上的單調(diào)性,并給出證明;

3)當(dāng)時,函數(shù)的值域是,求實數(shù)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓b2x2+a2y2a2b2ab0)的兩個焦點分別是F1、F2,等邊三角形的邊AF1AF2與該橢圓分別相交于B、C兩點,且2|BC||F1F2|,則該橢圓的離心率等于(  。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左頂點為,兩個焦點與短軸一個頂點構(gòu)成等腰直角三角形,過點且與x軸不重合的直線l與橢圓交于M,N不同的兩點.

(Ⅰ)求橢圓P的方程;

(Ⅱ)當(dāng)AM與MN垂直時,求AM的長;

(Ⅲ)若過點P且平行于AM的直線交直線于點Q,求證:直線NQ恒過定點.

查看答案和解析>>

同步練習(xí)冊答案