【題目】函數(shù)y = f(x)是定義域為R的偶函數(shù),當x≥0時,函數(shù)f(x)的圖象是由一段拋物線和一條射線組成(如圖所示)

時,y的取值范圍是______;

如果對任意 (b <0),都有,那么b的最大值是______

【答案】

【解析】

根據(jù)f(x)是偶函數(shù),圖象關(guān)于y軸對稱,結(jié)合圖象可得y的取值范圍.

當x0時,設(shè)拋物線的方程為y=ax2+bx+c,求解解析式,根據(jù)f(x)是定義域為R的偶函數(shù),可得x0的解析式,令y=1,可得x對應的值,結(jié)合圖象可得b的最大值.

由圖象可知,當時,函數(shù)在上的最小值,

時,函數(shù)在上的最小值,

所以當,函數(shù)的值域為;

時,函數(shù),當時,函數(shù),

時,,

又因為函數(shù)為偶函數(shù),圖象關(guān)于軸對稱,

所以對于任意,要使得,則,,

則實數(shù)的最大值是

故答案為:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點P和非零實數(shù),若兩條不同的直線 均過點P,且斜率之積為,則稱直線是一組“共軛線對”,如直 是一組“共軛線對”,其中O是坐標原點.

(1)已知是一組“共軛線對”,求的夾角的最小值;

(2)已知點A(0,1)、點和點C(1,0)分別是三條直線PQ,QR,RP上的點(A,B,CP,Q,R均不重合),且直線PR,PQ是“ 共軛線對”,直線QP,QR是“共軛線對”,直線RP,RQ是“共軛線對”,求點P的坐標;

(3)已知點 ,直線是“共軛線對”,當的斜率變化時,求原點O到直線的距離之積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,的中點,為外心,點滿足.

1)證明:

2)若,設(shè)相交于點關(guān)于點對稱,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,若,求的取值范圍;

2)若定義在上奇函數(shù)滿足,且當時,,求上的解析式;

3)對于(2)中的,若關(guān)于的不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)某氣象中心觀察和預測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數(shù)圖象如圖所示.過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即時間t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km)

(1)t4時,求s的值;

(2)st變化的規(guī)律用數(shù)學關(guān)系式表示出來;

(3)N城位于M地正南方向,且距M650 km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時間它將侵襲到N城?如果不會,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某人有4種顏色的燈泡(每種顏色的燈泡足夠多),要在如圖所示的6個點A、B、C、A1、B1、C1上各裝一個燈泡,要求同一條線段兩端的燈泡不同色,則每種顏色的燈泡都至少用一個的安裝方法共有 種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著城市地鐵建設(shè)的持續(xù)推進,市民的出行也越來越便利,根據(jù)大數(shù)據(jù)統(tǒng)計,某條地鐵線路運行時,發(fā)車時間間隔(單位:分鐘)滿足: ,平均每班地鐵的載客人數(shù) (單位:人)與發(fā)車時間間隔近似地滿足函數(shù)關(guān)系:,

1)若平均每班地鐵的載客人數(shù)不超過1560人,試求發(fā)車時間間隔的取值范圍;

2)若平均每班地鐵每分鐘的凈收益為(單位:元),則當發(fā)車時間間隔為多少時,平均每班地鐵每分鐘的凈收益最大?并求出最大凈收益.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高一學生有1000名學生參加一次數(shù)學小測驗,隨機抽取200名學生的測驗成績得如圖所示的頻率分布直方圖:

1)求該學校高一學生隨機抽取的200名學生的數(shù)學平均成績和標準差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值做代表);

2)試估計該校高一學生在這一次的數(shù)學測驗成績在區(qū)間之內(nèi)的概率是多少?測驗成績在區(qū)間之外有多少位學生?(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)的導函數(shù)

(1)若曲線與曲線相切,求實數(shù)的值;

(2)設(shè)函數(shù)為函數(shù)的極大值,且

①求的值;

②求證:對于.

查看答案和解析>>

同步練習冊答案