如圖,在正三棱柱ABCDEF中,AB=2,AD=1.P是CF的延長線上一點(diǎn),F(xiàn)P=t.過A、B、P三點(diǎn)的平面交FD于M,交FE于N.

(1)求證:MN∥平面CDE;
(2)當(dāng)平面PAB⊥平面CDE時(shí),求t的值.

(1)見解析(2)t=2

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面內(nèi),,AB=2BC=2,P為平面外一個(gè)動(dòng)點(diǎn),且PC=,

(1)問當(dāng)PA的長為多少時(shí),
(2)當(dāng)的面積取得最大值時(shí),求直線PC與平面PAB所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,AB是圓O的直徑,點(diǎn)C是弧AB的中點(diǎn),點(diǎn)V是圓O所在平面外一點(diǎn),是AC的中點(diǎn),已知.

(1)求證:OD//平面VBC;
(2)求證:AC⊥平面VOD;
(3)求棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖①,E、F分別是直角三角形ABC邊AB和AC的中點(diǎn),∠B=90°,沿EF將三角形ABC折成如圖②所示的銳二面角A1EFB,若M為線段A1C的中點(diǎn).求證:

(1)直線FM∥平面A1EB;
(2)平面A1FC⊥平面A1BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在三棱錐SABC中,SA⊥平面ABC,SA=AB=AC=BC,點(diǎn)D是BC邊的中點(diǎn),點(diǎn)E是線段AD上一點(diǎn),且AE=3DE,點(diǎn)M是線段SD上一點(diǎn),
 
(1)求證:BC⊥AM;
(2)若AM⊥平面SBC,求證:EM∥平面ABS.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在正方體ABCD-A1B1C1D1中,E、F分別是CD、A1D1中點(diǎn).
 
(1)求證:AB1⊥BF;
(2)求證:AE⊥BF;
(3)棱CC1上是否存在點(diǎn)F,使BF⊥平面AEP,若存在,確定點(diǎn)P的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知△中,,平面,、分別是上的動(dòng)點(diǎn),且

(1)求證:不論為何值,總有平面平面;
(2)當(dāng)為何值時(shí),平面平面?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐中S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.過A作AF⊥SB,垂足為F,點(diǎn)E,G分別是棱SA,SC的中點(diǎn).

求證:(1)平面EFG∥平面ABC;
(2)BC⊥SA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

畫一個(gè)正方體ABCDA1B1C1D1,再畫出平面ACD1與平面BDC1的交線,并且說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案