【題目】設(shè)函數(shù)f(x)=ax﹣ax(a>0且a≠1)
(1)若f(1)<0,求a的取值范圍;
(2)若f(1)= ,g(x)=a2x+a2x﹣2mf(x)且g(x)在[1,+∞)上的最小值為﹣2,求m的值.

【答案】
(1)解:f(x)=ax﹣ax(a>0且a≠1),

∵f(1)<0,

∴a﹣ <0,

又a>0,且a≠1,

∴0<a<1


(2)解:∵f(1)= ,∴a﹣ = ,即2a2﹣3a﹣2=0,

∴a=2或a=﹣ (舍去)

∴g(x)=22x+22x﹣2m(2x﹣2x)=(2x﹣2x2﹣2m(2x﹣2x)+2

令t=f(x)=2x﹣2x

則f(x)=2x﹣2x為增函數(shù),

∵x≥1,

∴t≥f(1)=

令h(t)=t2﹣2mt+2=(t﹣m)2+2﹣m2 (t≥

若m≥ ,當(dāng)t=m時(shí),h(t)min=2﹣m2=﹣2,∴m=2

若m< ,當(dāng)t= 時(shí),h(t)min= ﹣3m=﹣2,解得m= ,舍去

綜上可知m=2


【解析】(1)根據(jù)f(1)<0,解不等式可得a的取值范圍.(2)根據(jù)f(1)= 確定a=2的值,從而可得函數(shù)g(x)=22x+22x﹣2m(2x﹣2x)=(2x﹣2x2﹣2m(2x﹣2x)+2.令t=f(x)=2x﹣2x , 由(1)可知f(x)=2x﹣2x為增函數(shù),可得t≥f(1)= ,令h(t)=t2﹣2mt+2=(t﹣m)2+2﹣m2。╰≥ ),分類討論,利用最小值為﹣2,可求m的值
【考點(diǎn)精析】本題主要考查了函數(shù)的最值及其幾何意義和指、對(duì)數(shù)不等式的解法的相關(guān)知識(shí)點(diǎn),需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲;指數(shù)不等式的解法規(guī)律:根據(jù)指數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化;對(duì)數(shù)不等式的解法規(guī)律:根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+lnx(a∈R).

(1)當(dāng)a=時(shí),求f(x)在區(qū)間[1e]上的最大值和最小值;

(2)如果函數(shù)g(x),f1x),f2(x),在公共定義域D上,滿足f1x)<gx)<f2(x),那么就稱g(x)為f1x),f2(x)的“活動(dòng)函數(shù)”.已知函數(shù). 若在區(qū)間(1,+∞)上,函數(shù)f(x)是f1x),f2(x)的“活動(dòng)函數(shù)”,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)設(shè)AP=1,AD= ,三棱錐P﹣ABD的體積V= ,求二面角D﹣AE﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=cos(ωx+φ)(ω>0),x=﹣ 是y=f(x)的零點(diǎn),直線x= 為y=f(x)圖象的一條對(duì)稱軸,且函數(shù)f(x)在區(qū)間( , )上單調(diào),則ω的最大值是(
A.9
B.7
C.5
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A,B,C是橢圓C: (a>b>0)上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為(2,0),BC過(guò)橢圓的中心,且·=0,||=2||

(1)求橢圓C的方程;

(2)過(guò)點(diǎn)(0,t)的直線l(斜率存在)與橢圓C交于P,Q兩點(diǎn),設(shè)D為橢圓C與y軸負(fù)半軸的交點(diǎn),且||=||,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 =1(a>b>0)的右焦點(diǎn)為F1(1,0),離心率為e.設(shè)A,B為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),AF1的中點(diǎn)為M,BF1的中點(diǎn)為N,原點(diǎn)O在以線段MN為直徑的圓上.若直線AB的傾斜角α∈(0, ),則e的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷售量(單位: )和年利潤(rùn)(單位:千元)的影響.對(duì)近8年的年宣傳費(fèi)和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

表中.

(1)根據(jù)散點(diǎn)圖判斷哪一個(gè)適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸類型?(給出判斷即可,不必說(shuō)明理由)

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;

(3)已知這種產(chǎn)品的利潤(rùn)的的關(guān)系為.根據(jù)(2)的結(jié)果回答下列問(wèn)題:

(。┠晷麄髻M(fèi)時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值是多少?

(ⅱ)年宣傳費(fèi)為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?

附:對(duì)于一組數(shù)據(jù),其回歸直線的的斜率和截距的最小二乘估計(jì)為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在中,斜邊,將沿直線旋轉(zhuǎn)得到,設(shè)二面角的大小為.

(1)取的中點(diǎn),過(guò)點(diǎn)的平面與分別交于點(diǎn),當(dāng)平面平面時(shí),求的長(zhǎng)(2)當(dāng)時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)的坐標(biāo)分別為,直線相交于點(diǎn),且它們的斜率之積.

(1)求點(diǎn)的軌跡方程;

(2)在點(diǎn)的軌跡上有一點(diǎn)且點(diǎn)軸的上方, ,求的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案