【題目】奇函數(shù)f(x)在R上存在導(dǎo)數(shù),當(dāng)x<0時,f(x),則使得(x2﹣1)f(x)<0成立的x的取值范圍為( )
A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(0,1)
C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(1,+∞)
【答案】C
【解析】
根據(jù)當(dāng)x<0時,f(x)的結(jié)構(gòu)特征,構(gòu)造函數(shù),求導(dǎo)得,由當(dāng)x<0時,f(x),得在上是減函數(shù),再根據(jù)f(x)奇函數(shù),則也是奇函數(shù),在上也是減函數(shù),又因為函數(shù)f(x)在R上存在導(dǎo)數(shù),
所以函數(shù)f(x)是連續(xù)的,所以函數(shù)h(x)在R上是減函數(shù),并且與同號,將(x2﹣1)f(x)<0轉(zhuǎn)化為求解.
設(shè),
所以,
因為當(dāng)x<0時,f(x),
即,
所以,
所以在上是減函數(shù).
又因為f(x)奇函數(shù),
所以也是奇函數(shù),
所以在上也是減函數(shù),
又因為函數(shù)f(x)在R上存在導(dǎo)數(shù),
所以函數(shù)f(x)是連續(xù)的,
所以函數(shù)h(x)在R上是減函數(shù),并且與同號,
所以(x2﹣1)f(x)<0或
解得或
故選:C
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)函數(shù)僅有極小值時,不等實數(shù)滿足.證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,側(cè)面是菱形,其對角線的交點(diǎn)為,且,.
(1)求證:平面;
(2)設(shè),若直線與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax+1(a∈R).
(1)求f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=lnx,若對任意的x1∈(0,+∞),存在x2∈(1,+∞),使得f(x1)<g(x2)成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解高三年級不同性別的學(xué)生對體育課改上自習(xí)課的態(tài)度(肯定還是否定),進(jìn)行了如下的調(diào)查研究.全年級共有名學(xué)生,男女生人數(shù)之比為,現(xiàn)按分層抽樣方法抽取若干名學(xué)生,每人被抽到的概率均為.
(1)求抽取的男學(xué)生人數(shù)和女學(xué)生人數(shù);
(2)通過對被抽取的學(xué)生的問卷調(diào)查,得到如下列聯(lián)表:
否定 | 肯定 | 總計 | |
男生 | 10 | ||
女生 | 30 | ||
總計 |
①完成列聯(lián)表;
②能否有的把握認(rèn)為態(tài)度與性別有關(guān)?
(3)若一班有名男生被抽到,其中人持否定態(tài)度,人持肯定態(tài)度;二班有名女生被抽到,其中人持否定態(tài)度,人持肯定態(tài)度.
現(xiàn)從這人中隨機(jī)抽取一男一女進(jìn)一步詢問所持態(tài)度的原因,求其中恰有一人持肯定態(tài)度一人持否定態(tài)度的概率.
解答時可參考下面臨界值表:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(為參數(shù)),在以O為極點(diǎn),x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為
(1)求曲線C的直角坐標(biāo)方程
(2)設(shè)直線l與x軸交于點(diǎn)P,且與曲線C相交與A、B兩點(diǎn),若是與的等比中項,求實數(shù)m的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中e為自然對數(shù)的底數(shù).
(1)當(dāng)a=0時,求函數(shù)f (x)的單調(diào)減區(qū)間;
(2)已知函數(shù)f (x)的導(dǎo)函數(shù)f (x)有三個零點(diǎn)x1,x2,x3(x1 x2 x3).①求a的取值范圍;②若m1,m2(m1 m2)是函數(shù)f (x)的兩個零點(diǎn),證明:x1m1x1 1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com