已知數(shù)列的前項(xiàng)和,滿足:.
(Ⅰ)求數(shù)列的通項(xiàng)
(Ⅱ)若數(shù)列的滿足,為數(shù)列的前項(xiàng)和,求證:.

(Ⅰ);(Ⅱ)詳見解析.

解析試題分析:(Ⅰ)求數(shù)列的通項(xiàng),由已知,而的關(guān)系為,代入整理得,可構(gòu)造等比數(shù)列求通項(xiàng)公式;(Ⅱ)由,可求出,從而得,顯然是一個(gè)等差數(shù)列與一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)積組成的數(shù)列,可用錯(cuò)位相減法求數(shù)列的和,可證.
試題解析:(Ⅰ)解:當(dāng)時(shí),,則當(dāng)時(shí),
兩式相減得,即,∴,∴,當(dāng)時(shí),,則,∴是以為首項(xiàng),2為公比的等比數(shù)列,
,∴;
(Ⅱ)證明:,∴, 則 ,兩式相減得,,當(dāng)時(shí),, ∴為遞增數(shù)列,∴
考點(diǎn):1、由求數(shù)列的通項(xiàng)公式, 2、錯(cuò)位相減法求數(shù)列的和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}滿足,,.
(1)求證:數(shù)列為等比數(shù)列;
(2)是否存在互不相等的正整數(shù)、,使、成等差數(shù)列,且、 成等比數(shù)列?如果存在,求出所有符合條件的、、;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,若,
⑴證明數(shù)列為等差數(shù)列,并求其通項(xiàng)公式;
⑵令,①當(dāng)為何正整數(shù)值時(shí),:②若對(duì)一切正整數(shù),總有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是正數(shù)組成的數(shù)列,.若點(diǎn)在函數(shù)的導(dǎo)函數(shù)圖像上.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),是否存在最小的正數(shù),使得對(duì)任意都有成立?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列的前項(xiàng)和,且,.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列滿足,且.
(1) 求數(shù)列的通項(xiàng)公式;
(2) 若,設(shè)數(shù)列的前項(xiàng)和為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列及其前項(xiàng)和滿足:,).
(1)證明:設(shè),是等差數(shù)列;(2)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列的前項(xiàng)和為,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列的前項(xiàng)和為,且 (為常數(shù)),令,求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列的前項(xiàng)和為,且、、成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列是一個(gè)首項(xiàng)為,公差為的等差數(shù)列,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案