【題目】一次函數(shù)f(x)是R上的增函數(shù),已知f[f(x)]=16x+5,g(x)=f(x)(x+m).
(1)求f(x);
(2)若g(x)在(1,+∞)單調(diào)遞增,求實數(shù)m的取值范圍;
(3)當(dāng)x∈[﹣1,3]時,g(x)有最大值13,求實數(shù)m的值.

【答案】
(1)解:∵f(x)是R上的增函數(shù),

∴設(shè)f(x)=ax+b,a>0,

f[f(x)]=a(ax+b)+b=a2x+ab+b=16x+5,

∴a2=16,ab+b=5,

解得a=4,b=1或a=﹣4,b=﹣ (不合題意舍去),

∴f(x)=4x+1


(2)解:g(x)=f(x)(x+m)=(4x+1)(x+m)=4x2+(4m+1)x+m,

對稱軸為x=﹣ ,

由題意可得﹣ ≤1,解得m≥﹣


(3)解:由于g(x)為開口向上的拋物線,

可得g(x)的最大值為端點處的函數(shù)值.

當(dāng)g(﹣1)取得最大值時,即﹣3(m﹣1)=13,解得m=﹣ ;

當(dāng)g(3)取得最大值時,即13(m+3)=13,解得m=﹣2.

當(dāng)m=﹣2時,對稱軸為x=﹣ = ,g(﹣1)=9<g(3)=13;

當(dāng)m=﹣ 時,對稱軸為x=﹣ = ,g(﹣1)=13>g(3)=﹣13.

綜上可得,m=﹣2或﹣


【解析】(1)設(shè)f(x)=ax+b,a>0,代入條件,由恒等式的性質(zhì)可得方程,解方程可得f(x)的解析式;(2)求得g(x)的解析式和對稱軸方程,再由單調(diào)性可得﹣ ≤1,解不等式即可得到所求范圍;(3)根據(jù)拋物線的開口向上,可得最大值在端點處取得,解方程可得m的值,注意檢驗即可得到.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)單調(diào)性的性質(zhì)的相關(guān)知識,掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集,以及對函數(shù)的最值及其幾何意義的理解,了解利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(小)值;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲担

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

微信是騰訊公司推出的一種手機通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機采訪男性、女性用戶各50名,其中每天玩微信超過6小時的用戶列為微信控,否則稱其為非微信控,調(diào)查結(jié)果如下:


微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100

1)根據(jù)以上數(shù)據(jù),能否有的把握認為微信控性別有關(guān)?

2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人贈送營養(yǎng)面膜1份,求所抽取5人中微信控非微信控的人數(shù);

3)從(2)中抽取的5人中再隨機抽取3人贈送200元的護膚品套裝,記這3人中微信控的人數(shù)為,試求的分布列與數(shù)學(xué)期望.

參考公式: ,其中

參考數(shù)據(jù):


050

040

025

005

0025

0010


0455

0708

1321

3840

5024

6635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=f(x)最大值為3,且f(﹣4)=f(0)=﹣1
(1)求f(x)的解析式;
(2)求f(x)在[﹣3,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)的二次項系數(shù)為a,且f(x)>﹣x的解集為{x|1<x<2},方程f(x)+2a=0有兩相等實根,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解關(guān)于x的方程:
(1)lgx+lg(x﹣3)=1;
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,,,且當(dāng)時,的等差中項.數(shù)列為等比數(shù)列,且,.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差x/攝氏度

10

11

13

12

8

發(fā)芽數(shù)y/顆

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗。

(Ⅰ)求選取的2組數(shù)據(jù)恰好是不相鄰2天的數(shù)據(jù)的概率;

(Ⅱ)若選取的是12月1日與12月5日的2組數(shù)據(jù),請根據(jù)12月2日至4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程,并判斷該線性回歸方程是否可靠(若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的

附:回歸方程 中斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的偶函數(shù)y=f(x),當(dāng)x≥0時,f(x)=x2﹣2x.
(1)求當(dāng)x<0時,函數(shù)y=f(x)的解析式,并在給定坐標(biāo)系下,畫出函數(shù)y=f(x)的圖象;
(2)寫出函數(shù)y=|f(x)|的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直三棱柱的底面為正三角形,分別是上的點,且滿足,

(1)求證:平面平面;

(2)設(shè)直三棱柱的棱均相等,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案