【題目】函數(shù)在內(nèi)有兩個零點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. B.
C. D.
【答案】D
【解析】
設(shè),則函數(shù)等價為,條件轉(zhuǎn)化為,進(jìn)而轉(zhuǎn)化為與有兩個交點(diǎn),利用函數(shù)的單調(diào)性和導(dǎo)數(shù)的幾何意義,結(jié)合絕對值,合理分類討論,即可求解,得到答案.
由題意,函數(shù),
設(shè),則,
因?yàn)?/span>,所以,
則函數(shù)等價于,
即等價為在上有兩個零點(diǎn),
即在有兩個根,
設(shè),則,即函數(shù)是奇函數(shù),
則,即函數(shù)在上是增函數(shù),
且,
當(dāng),若時,則函數(shù)只有一個零點(diǎn),不滿足條件;
若時,則,
設(shè)過原點(diǎn)的直線與相切,切點(diǎn)為,
由,則,
則切線方程為,
切線過原點(diǎn),則,即,
則,
當(dāng),即切點(diǎn)為,此時切線的斜率為,
若,則,此時切線與相切,只有一個交點(diǎn),不滿足題意.
當(dāng)直線過點(diǎn)時,,
此時直線,
要使得與由兩個交點(diǎn),則,
當(dāng)時,時,,
由,得,當(dāng)直線過點(diǎn)時,,
要使得與由兩個交點(diǎn),則,
綜上或,
即實(shí)數(shù)的取值范圍是 ,
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年,在慶祝中華人民共和國成立周年之際,又迎來了以“創(chuàng)軍人榮耀,筑世界和平”為宗旨的第七屆世界軍人運(yùn)動會.據(jù)悉,這次軍運(yùn)會將于年月日至日在美麗的江城武漢舉行,屆時將有來自全世界多個國家和地區(qū)的近萬名軍人運(yùn)動員參賽.相對于奧運(yùn)會、亞運(yùn)會等大型綜合賽事,軍運(yùn)會或許對很多人來說還很陌生.為此,武漢某高校為了在學(xué)生中更廣泛的推介普及軍運(yùn)會相關(guān)知識內(nèi)容,特在網(wǎng)絡(luò)上組織了一次“我所知曉的武漢軍運(yùn)會”知識問答比賽,為便于對答卷進(jìn)行對比研究,組委會抽取了名男生和名女生的答卷,他們的考試成績頻率分布直方圖如下:
(注:問卷滿分為分,成績的試卷為“優(yōu)秀”等級)
(1)從現(xiàn)有名男生和名女生答卷中各取一份,分別求答卷成績?yōu)椤皟?yōu)秀”等級的概率;
(2)求列聯(lián)表中,,,的值,并根據(jù)列聯(lián)表回答:能否在犯錯誤的概率不超過的前提下認(rèn)為“答卷成績?yōu)閮?yōu)秀等級與性別有關(guān)”?
男 | 女 | 總計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計 |
(3)根據(jù)男、女生成績頻率分布直方圖,對他們的成績的優(yōu)劣進(jìn)行比較.
附:參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(請寫出式子在寫計算結(jié)果)有4個不同的小球,4個不同的盒子,現(xiàn)在要把球全部放入盒內(nèi):
(1)共有多少種方法?
(2)若每個盒子不空,共有多少種不同的方法?
(3)恰有一個盒子不放球,共有多少種放法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對在直角坐標(biāo)系的第一象限內(nèi)的任意兩點(diǎn),作如下定義:,那么稱點(diǎn)是點(diǎn)的“上位點(diǎn)”,同時點(diǎn)是點(diǎn)的“下位點(diǎn)”.
(1)試寫出點(diǎn)的一個“上位點(diǎn)”坐標(biāo)和一個“下位點(diǎn)”坐標(biāo);
(2)設(shè)、、、均為正數(shù),且點(diǎn)是點(diǎn)的上位點(diǎn),請判斷點(diǎn)是否既是點(diǎn)的“下位點(diǎn)”又是點(diǎn)的“上位點(diǎn)”,如果是請證明,如果不是請說明理由;
(3)設(shè)正整數(shù)滿足以下條件:對任意實(shí)數(shù),總存在,使得點(diǎn)既是點(diǎn)的“下位點(diǎn)”,又是點(diǎn)的“上位點(diǎn)”,求正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心在x軸上,且經(jīng)過點(diǎn).
(1)求圓C的方程;
(2)若點(diǎn),直線l平行于OQ(O為坐標(biāo)原點(diǎn))且與圓C相交于M,N兩點(diǎn),直線QM、QN的斜率分別為kQM、kQN,求證:kQM+kQN為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與圓:有且僅有兩個公共點(diǎn),點(diǎn)、、分別是橢圓上的動點(diǎn)、左焦點(diǎn)、右焦點(diǎn),三角形面積的最大值是.
(1)求橢圓的方程;
(2)若點(diǎn)在橢圓第一象限部分上運(yùn)動,過點(diǎn)作圓的切線,過點(diǎn)作的垂線,求證:,交點(diǎn)的縱坐標(biāo)的絕對值為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(Ⅰ)若,解不等式;
(Ⅱ)當(dāng)時,函數(shù)的最小值為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中, 與相交于點(diǎn),點(diǎn)在線段上,,且平面.
(1)求實(shí)數(shù)的值;
(2)若,, 求點(diǎn)到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com