大學生自主創(chuàng)業(yè)已成為當代潮流。長江學院大三學生夏某今年一月初向銀行貸款20000元作開店資金,全部用作批發(fā)某種商品,銀行貸款的年利率為6%,約定一年后一次還清貸款。已知夏某每月月底獲得的利潤是該月月初投人資金的15%,每月月底需要交納個人所得稅為該月所獲利潤的20%,當月房租等其他開支1500元,余款作為資金全部投入批發(fā)該商品再經(jīng)營,如此繼續(xù),假定每月月底該商品能全部賣出。
(1)設夏某第個月月底余元,第個月月底余元,寫出的值并建立的遞推關系式;
(2)預計年底夏某還清銀行貸款后的純收入。(參考數(shù)據(jù):1.1211≈3.48,1.1212≈3.90,0.1211≈7.43×10﹣11,0.1212≈8.92×10﹣12
(1)an+1=1.12an﹣1500(n∈N+,1≤n≤11)(2)20532元

試題分析:(1)根據(jù)夏某每月月底獲得的利潤是該月月初投人資金的15%,每月月底需要交納個人所得稅為該月所獲利潤的20%,當月房租等其他開支1500元,可求a1的值并建立an+1與an的遞推關系;
(2)構造{an-12500}是以20900為首項,1.12為公比的等比數(shù)列,即可求得結論.
試題解析:(1)由題意a1=20000(1+15%)﹣20000×15%×20%﹣1500=20900(元)
an+1=an(1+15%)﹣an×15%×20%﹣1500=1.12an﹣1500(n∈N+,1≤n≤11)
(2)令an+1+λ=1.12(an+λ),則an+1=1.12an+0.12λ,∵an+1=1.12an﹣1500,∴λ=﹣12500
∴an+1﹣12500=1.12(an﹣12500),∴{an﹣12500}是以20900為首項,1.12為公比的等比數(shù)列
∴an﹣12500=(20900﹣12500)×1.12n﹣1,即an=8400×1.12n﹣1+12500
∴a12=8400×1.1211+12500≈41732(元) 又年底償還銀行本利總計20000(1+6%)=21200(元)
故該生還清銀行貸款后純收入41732﹣21200=20532(元)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知集合,對于數(shù)列.
(Ⅰ)若三項數(shù)列滿足,則這樣的數(shù)列有多少個?
(Ⅱ)若各項非零數(shù)列和新數(shù)列滿足首項,),且末項,記數(shù)列的前項和為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知等差數(shù)列{}的首項a1=1,公差d>0,且分別是等比數(shù)列{}的b2,b3,b4
(I)求數(shù)列{}與{{}的通項公式;
(Ⅱ)設數(shù)列{}對任意自然數(shù)n均有成立,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設數(shù)列{an} 的前n項和為Sn,滿足2Sn=an+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差數(shù)列.
(1)求a1,a2,a3的值;
(2)求證:數(shù)列{an+2n}是等比數(shù)列;
(3)證明:對一切正整數(shù)n,有++…+

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設數(shù)列為等差數(shù)列,且;數(shù)列的前n項和為,且。
(I)求數(shù)列,的通項公式;
(II)若,為數(shù)列的前n項和,求。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

數(shù)列中,已知,時,.數(shù)列滿足:
(1)證明:為等差數(shù)列,并求的通項公式;
(2)記數(shù)列的前項和為,若不等式成立(為正整數(shù)).求出所有符合條件的有序實數(shù)對

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

是公差大于零的等差數(shù)列,已知.
(Ⅰ)求的通項公式;
(Ⅱ)設是以函數(shù)的最小正周期為首項,以為公比的等比數(shù)列,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,一個類似楊輝三角的數(shù)陣,則第行的第2個數(shù)為              .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

黑白兩種顏色的正六邊形地面磚按如圖的規(guī)律拼成若干個圖案:

則第個圖案中有白色地面磚                  塊.

查看答案和解析>>

同步練習冊答案