工人師傅在如圖1的一塊矩形鐵皮的中間畫了一條曲線,并沿曲線剪開,將所得的兩部分卷成圓柱狀,如圖2,然后將其對接,可做成一個直角的“拐脖”,如圖3.對工人師傅所畫的曲線,有如下說法

是一段拋物線;

2)是一段雙曲線;

3)是一段正弦曲線;

4)是一段余弦曲線;

5)是一段圓弧.

則正確的說法序號是________.

 

 

【答案】

3)(4

【解析】

試題分析:將圖2剪開展成平面圖分析可知,曲線為軸對稱圖形,將圖3剪開展成平面圖分析可知,曲線也為中心對稱圖形。所以此曲線即為軸對稱圖形又為中心對稱圖形,故只有(3)(4)正確。

考點:函數(shù)的對稱性和奇偶性。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,ABCD是一塊邊長為7米的正方形鐵皮,其中ATN是一半徑為6米的扇形,已經(jīng)被腐蝕不能使用,其余部分完好可利用.工人師傅想在未被腐蝕部分截下一個有邊落在BC與CD上的長方形鐵皮PQCR,其中P是
TN
上一點.設(shè)∠TAP=θ,長方形PQCR的面積為S平方米.
(1)求S關(guān)于θ的函數(shù)解析式;
(2)設(shè)sinθ+cosθ=t,求S關(guān)于t的表達(dá)式以及S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,ABCD是一塊邊長為7米的正方形鐵皮,其中ATN是一半徑為6米的扇形,已經(jīng)被腐蝕不能使用,其余部分完好可利用.工人師傅想在未被腐蝕部分截下一個有邊落在BC與CD上的長方形鐵皮PQCR,其中P是弧TN上一點.設(shè)∠TAP=θ,長方形PQCR的面積為S平方米.
(1)求S關(guān)于θ的函數(shù)解析式;
(2)求S的最大值及此時θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆上海市盧灣區(qū)高三上學(xué)期期末數(shù)學(xué)理卷 題型:解答題

(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
如圖所示,ABCD是一塊邊長為7米的正方形鐵皮,其中ATN是一半徑為6米的扇形,已經(jīng)被腐蝕不能使用,其余部分完好可利用.工人師傅想在未被腐蝕部分截下一個有邊落在BCCD上的長方形鐵皮PQCR,其中P上一點.設(shè),長方形PQCR的面積為S平方米.
(1)求S關(guān)于的函數(shù)解析式;
(2)設(shè),求S關(guān)于t的表達(dá)式以及S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市盧灣區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖所示,ABCD是一塊邊長為7米的正方形鐵皮,其中ATN是一半徑為6米的扇形,已經(jīng)被腐蝕不能使用,其余部分完好可利用.工人師傅想在未被腐蝕部分截下一個有邊落在BC與CD上的長方形鐵皮PQCR,其中P是上一點.設(shè)∠TAP=θ,長方形PQCR的面積為S平方米.
(1)求S關(guān)于θ的函數(shù)解析式;
(2)設(shè)sinθ+cosθ=t,求S關(guān)于t的表達(dá)式以及S的最大值.

查看答案和解析>>

同步練習(xí)冊答案