過原點(diǎn)與曲線相切的切線方程為                             (    )
A.B.C.D.
A
設(shè)切點(diǎn)坐標(biāo)為,切線方程為,因?yàn)榇饲芯過原點(diǎn),所以切線方程為,即.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)已知定義在正實(shí)數(shù)集上的函數(shù),,其中.設(shè)兩曲線,有公共點(diǎn),且在該點(diǎn)處的切線相同.
(1)用表示,并求的最大值;
(2)判斷當(dāng)時(shí),的大小,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖是函數(shù)的導(dǎo)函數(shù)的圖象,給出下列命題:

①-1是函數(shù)的極小值點(diǎn);
②-1是函數(shù)的極值點(diǎn);
在x=0處切線的斜率小于零;
在區(qū)間(-3,1)上單調(diào)遞增。
則正確命題的序號是(       )
A.①②B.①④C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)方程;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

用總長14.8米的鋼條制作一個(gè)長方體容器的框架,如果所制容器底面一邊的長比另一邊的長多0.5米,那么高為多少時(shí)容器的容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

上連續(xù),在內(nèi)可導(dǎo),且時(shí),,又,則  (      )
A.上單調(diào)遞增,且
B.上單調(diào)遞增,且
C.上單調(diào)遞減,且
D.上單調(diào)遞增,但的符號無法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)且導(dǎo)數(shù).
(1)試用含有的式子表示,并求的單調(diào)區(qū)間;
(2)對于函數(shù)圖象上不同的兩點(diǎn),且,如果在函數(shù)圖像上存在點(diǎn)(其中)使得點(diǎn)處的切線,則稱存在“相依切線”.特別地,當(dāng)時(shí),又稱存在“中值相依切線”.試問:在函數(shù)上是否存在兩點(diǎn)使得它存在“中值相依切線”?若存在,求的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線在點(diǎn) 處的切線斜率為 
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線C:處的切線方程為______.

查看答案和解析>>

同步練習(xí)冊答案