【題目】 在一個特定時段內(nèi),以點E為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點E正北55海里處有一個雷達觀測站A.某時刻測得一艘勻速直線行駛的船只位于點A北偏東且與點A相距40海里的位置B,經(jīng)過40分鐘又測得該船已行駛到點A北偏東+(其中sin=,)且與點A相距10海里的位置C.
(I)求該船的行駛速度(單位:海里/小時);
(II)若該船不改變航行方向繼續(xù)行駛.判斷它是否會進入警戒水域,并說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圍建一個面積為360的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進出口,如圖所示,已知舊墻的維修費用為45元/m,新墻的造價為180元/m,設(shè)利用的舊墻的長度為(單位:),修建此矩形場地圍墻的總費用為(單位:元)
(1)將表示為的函數(shù);
(2)試確定,使修建此矩形場地圍墻的總費用最小,并求出最小總費用。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的的單調(diào)區(qū)間;
(2)若恒成立,試確定實數(shù)的取值范圍;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點,是棱上的點,,,.
(1)求證:平面平面;
(2)若,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生在開學(xué)季準備銷售一種文具盒進行試創(chuàng)業(yè),在一個開學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利潤50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開學(xué)季市場需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個開學(xué)季購進了160盒該產(chǎn)品,以(單位:盒,)表示這個開學(xué)季內(nèi)的市場需求量,(單位:元)表示這個開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤.
(I)根據(jù)直方圖估計這個開學(xué)季內(nèi)市場需求量的眾數(shù)和中位數(shù);
(II)將表示為的函數(shù);
(III)根據(jù)直方圖估計利潤不少于4800元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)若函數(shù)在點處的切線方程為,求的值;
(II)若在區(qū)間上,函數(shù)的圖象恒在直線下方,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過點,圓的圓心在圓的內(nèi)部,且直線被圓所截得的弦長為.點為圓上異于的任意一點,直線與軸交于點,直線與軸交于點.
(1)求圓的方程;
(2)求證: 為定值;
(3)當取得最大值時,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為坐標原點,點F為拋物線C1:的焦點,且拋物線C1上點P處的切線與圓C2:相切于點Q.
(Ⅰ)當直線PQ的方程為時,求 拋物線C1的方程;
(Ⅱ)當正數(shù)P變化時,記S1 ,S2分別為△FPQ,△FOQ的面積,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com