【題目】若函數(shù)f(x)=x﹣ sin2x+asinx在(﹣∞,+∞)單調(diào)遞增,則a的取值范圍是( 。
A.[﹣1,1]
B.[﹣1, ]
C.[﹣ , ]
D.[﹣1,﹣ ]
【答案】C
【解析】解:函數(shù)f(x)=x﹣ sin2x+asinx的導(dǎo)數(shù)為f′(x)=1﹣ cos2x+acosx,
由題意可得f′(x)≥0恒成立,即為1﹣ cos2x+acosx≥0,即有 ﹣ cos2x+acosx≥0,
設(shè)t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,
當(dāng)t=0時(shí),不等式顯然成立;
當(dāng)0<t≤1時(shí),3a≥4t﹣ ,由4t﹣ 在(0,1]遞增,可得t=1時(shí),取得最大值﹣1,可得3a≥﹣1,即a≥﹣ ;當(dāng)﹣1≤t<0時(shí),3a≤4t﹣ ,由4t﹣ 在[﹣1,0)遞增,可得t=﹣1時(shí),取得最小值1,可得3a≤1,即a≤ .綜上可得a的范圍是[﹣ , ].
故選:C.
【考點(diǎn)精析】掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性是解答本題的根本,需要知道一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 且a +2an=4Sn(n∈N*).
(1)求an;
(2)設(shè)數(shù)列{bn}滿足:b1=1,bn= (n∈N* , n≥2),求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 經(jīng)過點(diǎn) ,且離心率為 .
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A,B是橢圓C的左,右頂點(diǎn),P為橢圓上異于A,B的一點(diǎn),以原點(diǎn)O為端點(diǎn)分別作與直線AP和BP平行的射線,交橢圓C于M,N兩點(diǎn),求證:△OMN的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)化肥廠生產(chǎn)甲種混合肥料1車皮、乙種混合肥料1車皮所需要的主要原料如表:
原料 | 磷酸鹽(單位:噸) | 硝酸鹽(單位:噸) |
甲 | 4 | 20 |
乙 | 2 | 20 |
現(xiàn)庫存磷酸鹽8噸、硝酸鹽60噸,計(jì)劃在此基礎(chǔ)上生產(chǎn)若干車皮的甲、乙兩種混合肥料.
(1)設(shè)x,y分別表示計(jì)劃生產(chǎn)甲、乙兩種肥料的車皮數(shù),試列出x,y滿足的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)若生產(chǎn)1車皮甲種肥料,利潤(rùn)為3萬元;生產(chǎn)1車皮乙種肥料,利潤(rùn)為2萬元.那么分別生產(chǎn)甲、乙兩種肥料多少車皮,能夠產(chǎn)生最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知Sn為等差數(shù)列{an}的前n項(xiàng)和,S6=51,a5=13.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}的通項(xiàng)公式是bn= , 求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圖甲中的圖象對(duì)應(yīng)的函數(shù)y=f(x),則圖乙中的圖象對(duì)應(yīng)的函數(shù)在下列給出的四式中只可能是( )
A.y=f(|x|)
B.y=|f(x)|
C.y=f(﹣|x|)
D.y=﹣f(|x|)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中的假命題是( )
A.?x∈R,2﹣x+1>1
B.?x∈[1,2],x2﹣1≥0
C.?x∈R,sinx+cosx=
D.?x∈R,x2+ ≤1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4x+a2x+3,a∈R
(1)當(dāng)a=﹣4時(shí),且x∈[0,2],求函數(shù)f(x)的值域;
(2)若f(x)>0在(0,+∞)對(duì)任意的實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】O為△ABC內(nèi)一點(diǎn),且2 , =t ,若B,O,D三點(diǎn)共線,則t的值為( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com