如圖,AB、CD是⊙O的兩條平行切線,B、D為切點,AC為⊙O的切線,切點為E.過A作AF⊥CD,F(xiàn)為垂足.

(1)求證:四邊形ABDF是矩形;
(2)若AB=4,CD=9,求⊙O的半徑.

(1)連結(jié)OB,并作BO的延長線,推出OB⊥AB;根據(jù)AB∥CD,
推出BD為⊙O直徑,又∵AF⊥CD,∴四邊形ABDF是矩形。
(2)⊙O的半徑長為6 。

解析試題分析:(1)連結(jié)OB,并作BO的延長線,

∵AB切⊙O于B,∴OB⊥AB
∵AB∥CD,∴BO⊥CD,∴BO經(jīng)過D點
∴BD為⊙O直徑
又∵AF⊥CD,∴四邊形ABDF是矩形      5分
(2)在RtΔACF中,
由切線長定理得 AB=AE, CE=CD
∴AC=AE+CE=AB+CD=13,CF=CD-DF=CD-AB=5
∴AF=,從而OB=6
即⊙O的半徑長為6                           10分
考點: 本題主要考查圓的幾何性質(zhì),切線長定理,弦切角定理。
點評:中檔題,作為選考內(nèi)容,題目的難度往往不大,突出對基礎(chǔ)知識的考查。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,為圓的直徑,為垂直于的一條弦,垂足為,弦交于點.

(Ⅰ)證明:四點共圓;
(Ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

、分別與圓相切于,經(jīng)過圓心,且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知C點在⊙O直徑BE的延長線上,CA切⊙O于A 點,CD是∠ACB的平分線且交AE于點F,交AB于點D

(1)求∠ADF的度數(shù); (2)若AB=AC,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直線l與⊙O相切于點A,點P為直線l上一點,直線PO交⊙O于點C、B,點D在線段AP上,連結(jié)DB,且ADDB

(1)判斷直線DB與⊙O的位置關(guān)系,并說明理由;
(2)若PBBO,⊙O的半徑為4cm,求AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,如圖,在平行四邊形ABCD中,延長DA到點E,延長BC到點F,使得AE=CF,連接EF,分別交AB,CD于點M,N,連接DM,BN.

(1)求證:△AEM ≌△CFN;
(2)求證:四邊形BMDN是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知銳角△ABC的面積為1,正方形DEFG是△ABC的一個內(nèi)接三角形,
DG∥BC,求正方形DEFG面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
如圖,、是圓的兩條平行弦,交圓于,過點的切線交的延長線于,.

(1)求的長;
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

己知△ABC中,AB="AC" , D是△ABC外接圓劣弧上的點(不與點A , C重合),延長BD至E。
(1)求證:AD 的延長線平分
(2)若,△ABC中BC邊上的高為,
求△ABC外接圓的面積.

查看答案和解析>>

同步練習(xí)冊答案