【題目】對(duì)于三個(gè)實(shí)數(shù)、、,若成立,則稱、具有“性質(zhì)”.
(1)試問(wèn):①,0是否具有“性質(zhì)2”;
②(),0是否具有“性質(zhì)4”;
(2)若存在及,使得成立,且
,1具有“性質(zhì)2”,求實(shí)數(shù)的取值范圍;
(3)設(shè),,,為2019個(gè)互不相同的實(shí)數(shù),點(diǎn)()
均不在函數(shù)的圖象上,是否存在,且,使得、
具有“性質(zhì)2018”,請(qǐng)說(shuō)明理由.
【答案】(1)①具有“性質(zhì)2”,②不具有“性質(zhì)4”;(2);(3)存在.
【解析】
(1)①根據(jù)題意需要判斷的真假即可② 根據(jù)題意判斷是否成立即可得出結(jié)論;(2)根據(jù)具有性質(zhì)2可求出的范圍,由存在性問(wèn)題成立轉(zhuǎn)化為 ,根據(jù)函數(shù)的性質(zhì)求最值即可求解.
(1)①因?yàn)?/span>,成立,
所以,故,0具有“性質(zhì)2”
②因?yàn)?/span>,設(shè),則
設(shè),
對(duì)稱軸為,
所以函數(shù)在上單調(diào)遞減,當(dāng)時(shí),,
所以當(dāng)時(shí),不恒成立,
即不成立,
故(),0不具有“性質(zhì)4”.
(2)因?yàn)?/span>,1具有“性質(zhì)2”
所以
化簡(jiǎn)得
解得或 .
因?yàn)榇嬖?/span>及,使得成立,
所以存在 及使 即可.
令,則,
當(dāng)時(shí),,
所以在上是增函數(shù),
所以時(shí),,當(dāng)時(shí),,
故時(shí),
因?yàn)?/span>在上單調(diào)遞減,在 上單調(diào)遞增,
所以,
故只需滿足即可,解得.
(3)假設(shè)具有“性質(zhì)2018”,則,
即證明在任意2019個(gè)互不相同的實(shí)數(shù)中,一定存在兩個(gè)實(shí)數(shù),滿足:
.
證明:
由,
令,由萬(wàn)能公式知,
將等分成2018個(gè)小區(qū)間,則這2019個(gè)數(shù)必然有兩個(gè)數(shù)落在同一個(gè)區(qū)間,令其為:,即,
也就是說(shuō),在,,,這2019個(gè)數(shù)中,一定有兩個(gè)數(shù)滿足,
即一定存在兩個(gè)實(shí)數(shù),滿足,
從而得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}為等差數(shù)列,前n項(xiàng)和為Sn(n∈N+),{bn}是首項(xiàng)為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4﹣2a1 , S11=11b4 .
(Ⅰ)求{an}和{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{a2nb2n﹣1}的前n項(xiàng)和(n∈N+).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin2x﹣cos2x﹣2 sinx cosx(x∈R).
(Ⅰ)求f( )的值.
(Ⅱ)求f(x)的最小正周期及單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時(shí),討論的單調(diào)性;
(2)設(shè),當(dāng)時(shí),若對(duì)任意,存在使,求實(shí)數(shù)取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】盒中裝有個(gè)零件,其中個(gè)是使用過(guò)的,另外個(gè)未經(jīng)使用.
(1)從盒中每次隨機(jī)抽取個(gè)零件,每次觀察后都將零件放回盒中,求次抽取中恰有次抽到使用過(guò)的零件的概率;
(2)從盒中隨機(jī)抽取個(gè)零件,使用后放回盒中,記此時(shí)盒中使用過(guò)的零件個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,多面體中, 兩兩垂直,且, , ,
.
(Ⅰ) 若點(diǎn)在線段上,且,求證: 平面;
(Ⅱ)求直線與平面所成的角的正弦值;
(Ⅲ)求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.
(Ⅰ)求a;
(Ⅱ)證明:f(x)存在唯一的極大值點(diǎn)x0 , 且e﹣2<f(x0)<2﹣2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3﹣2x+ex﹣ ,其中e是自然對(duì)數(shù)的底數(shù).若f(a﹣1)+f(2a2)≤0.則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】海關(guān)對(duì)同時(shí)從三個(gè)不同地區(qū)進(jìn)口的某種商品進(jìn)行抽樣檢測(cè),從各地區(qū)進(jìn)口此種商品的數(shù)量(單位:件)如下表所示,工作人員用分層抽樣的方法從這些商品中共抽取6件進(jìn)行檢測(cè).
地區(qū) | |||
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來(lái)自各地區(qū)商品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件送往甲機(jī)構(gòu)進(jìn)一步檢測(cè),求這2件商品來(lái)自相同地區(qū)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com