【題目】已知橢圓的右焦點(diǎn)為,右準(zhǔn)線為.點(diǎn)是橢圓上異于長軸端點(diǎn)的任意一點(diǎn),連接并延長交橢圓于點(diǎn),線段的中點(diǎn)為,為坐標(biāo)原點(diǎn),且直線與右準(zhǔn)線交于點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若,求點(diǎn)的坐標(biāo);

3)試確定直線與橢圓的公共點(diǎn)的個(gè)數(shù),并說明理由.

【答案】1;(2;(3)直線與橢圓有且僅有一個(gè)公共點(diǎn),答案見解析.

【解析】

1)由焦點(diǎn)坐標(biāo)和準(zhǔn)線方程及求出橢圓的方程;
2)設(shè),設(shè)過右焦點(diǎn)的直線的方程與橢圓聯(lián)立求出兩根之和及兩根之積,由題意求的坐標(biāo),再由得到關(guān)系,再由進(jìn)而求出的坐標(biāo);
3)設(shè)出的坐標(biāo),由(2)可得直線的方程為,所以點(diǎn)坐標(biāo)為,可得直線的方程,再與橢圓聯(lián)立,判別式等于0,即得,求出直線與橢圓僅有一個(gè)交點(diǎn).

解:(1)由題意可知,解得,

所以橢圓的標(biāo)準(zhǔn)方程為:

2)設(shè),

當(dāng)時(shí),點(diǎn)坐標(biāo)為(30),點(diǎn)坐標(biāo)為(4,0),.

當(dāng)時(shí),直線的方程為,代入橢圓方程,消去整理得

,

所以中點(diǎn)的橫坐標(biāo),

縱坐標(biāo).

因?yàn)?/span>,所以,

所以

,得,解得,或,

故點(diǎn)的坐標(biāo)為.

3)直線與橢圓有且僅有一個(gè)公共點(diǎn),以下給出證明:

因?yàn)橹本的方程為,所以點(diǎn)坐標(biāo)為

所以直線的斜率,

直線的方程為,即,

代入橢圓方程,得

,得,解得,

故直線與橢圓有且僅有一個(gè)公共點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,,,,,則三棱錐外接球的表面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,,點(diǎn)上一點(diǎn)且

1)求證:平面平面;

2)若直線與平面所成的角的正弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出兩塊相同的正三角形鐵皮(如圖1,圖2),

1)要求用其中一塊剪拼成一個(gè)三棱錐模型,另一塊剪拼成一個(gè)正三棱柱模型,使它們的全面積都與原三角形的面積相等,

①請(qǐng)?jiān)O(shè)計(jì)一種剪拼方法,分別用虛線標(biāo)示在圖1、圖2中,并作簡要說明;

②試比較你剪拼的正三棱錐與正三棱柱的體積的大小

2)設(shè)正三角形鐵皮的邊長為,將正三角形鐵皮的三個(gè)角切去三個(gè)全等的四邊形,再把它的邊沿虛線折起(如圖3),做成一個(gè)無蓋的正三角形底鐵皮箱,當(dāng)箱底邊長為多少時(shí),箱子容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)試討論的單調(diào)性;

2)若函數(shù)在定義域上有兩個(gè)極值點(diǎn),試問:是否存在實(shí)數(shù),使得?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求的單調(diào)性和極值;

(Ⅱ)若函數(shù)至少有1個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新冠肺炎疫情的控制需要根據(jù)大數(shù)據(jù)進(jìn)行分析,并有針對(duì)性的采取措施.下圖是甲、乙兩個(gè)省份從27日到213日一周內(nèi)的新增新冠肺炎確診人數(shù)的折線圖.根據(jù)圖中甲、乙兩省的數(shù)字特征進(jìn)行比對(duì),下列說法錯(cuò)誤的是(

A.27日到213日甲省的平均新增新冠肺炎確診人數(shù)低于乙省

B.27日到213日甲省的單日新增新冠肺炎確診人數(shù)最大值小于乙省

C.27日到213日乙省相對(duì)甲省的新增新冠甲省肺炎確診人數(shù)的波動(dòng)大

D.后四日(210日至13日)乙省每日新增新冠肺炎確診人數(shù)均比甲省多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左、右焦點(diǎn)分別是,,離心率為,左、右頂點(diǎn)分別為,.且垂直于軸的直線被橢圓截得的線段長為1.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)經(jīng)過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn)、(不與點(diǎn)、重合),直線與直線相交于點(diǎn),求證:、三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)判斷方程的根個(gè)數(shù);

(2)若時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案