【題目】在中,邊,所在直線的方程分別為,,已知是邊上一點(diǎn).
(1)若為邊上的高,求直線的方程;
(2)若為邊的中線,求的面積.
【答案】(1)(2)6
【解析】試題分析:
(1)利用題意首先求得BC的斜率,然后由點(diǎn)斜式可得直線的方程為;
(2)由題意可得三角形的高為,結(jié)合幾何關(guān)系可得的面積為6.
試題解析:
(1)由解得,即,分
又,所以,
因?yàn)?/span>為邊上的高,所以,
為邊上一點(diǎn),所以 ,
所以直線的方程為.
(2)法一:設(shè)點(diǎn)的坐標(biāo)為,由為的中點(diǎn),得點(diǎn)的坐標(biāo)為,
又點(diǎn)與點(diǎn)分別在直線和上,
所以,解得,
所以點(diǎn)的坐標(biāo)為,
由(1)得,又,
所以直線的方程為,
所以點(diǎn)到直線的距離,
又,
所以,
又為的中點(diǎn)
所以.
法二:(上同法一)
點(diǎn)的坐標(biāo)為,
又為上一點(diǎn),
所以直線的方程為.
由(1)知,所以點(diǎn)到直線的距離
,
又的坐標(biāo)為,
所以,
所以.
法三:若直線的斜率不存在,即的方程為,
由解得,
即的坐標(biāo)為,同理可得的坐標(biāo)為,
而, 不是的中點(diǎn),所以直線的斜率存在.
設(shè)直線的方程為
由解得,即的坐標(biāo)為
同理可得的坐標(biāo)為,為的中點(diǎn)所以解得,
所以直線的方程為,即為.
(下同法二)
法四:求正弦值即,長用面積公式(略).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}共有2k項(xiàng)(),數(shù)列{an}的前n項(xiàng)和為Sn,滿足:a1 = 2,an1 = (p 1) Sn 2(n = 1,2,…, 2k1),其中常數(shù)p > 1.
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)若,數(shù)列{bn }滿足(n = 1,2,…, 2k),求數(shù)列
{bn }的通項(xiàng)公式;
(3)對于(2)中數(shù)列{bn },求和Tn = .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)(為自然對數(shù)的底數(shù))時,求的最小值;
(2)討論函數(shù)零點(diǎn)的個數(shù);
(3)若對任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在2016年6月英國“脫歐”公投前夕,為了統(tǒng)計(jì)該國公民是否有“留歐”意愿,該國某中學(xué)數(shù)學(xué)興趣小組隨機(jī)抽查了50名不同年齡層次的公民,調(diào)查統(tǒng)計(jì)他們是贊成“留歐”還是反對“留歐”.現(xiàn)已得知50人中贊成“留歐”的占60%,統(tǒng)計(jì)情況如下表:
年齡層次 | 贊成“留歐” | 反對“留歐” | 合計(jì) |
18歲—19歲 | 6 | ||
50歲及50歲以上 | 10 | ||
合計(jì) | 50 |
(1)請補(bǔ)充完整上述列聯(lián)表;
(2)請問是否有97.5%的把握認(rèn)為贊成“留歐”與年齡層次有關(guān)?請說明理由.
參考公式與數(shù)據(jù):,其中
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,,三個函數(shù)的定義域均為集合.
(1)若,試判斷集合與的關(guān)系,并說明理由;
(2)記,是否存在,使得對任意的實(shí)數(shù),函數(shù)有且僅有兩個零點(diǎn)?若存在,求出滿足條件的最小正整數(shù);若不存在,說明理由.(以下數(shù)據(jù)供參考:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,橢圓上的點(diǎn)滿足,且的面積為.
(1)求橢圓的方程;
(2)設(shè)橢圓的左、右頂點(diǎn)分別為、,過點(diǎn)的動直線與橢圓相交于、兩點(diǎn),直線與直線的交點(diǎn)為,證明:點(diǎn)總在直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】口袋中裝有質(zhì)地大小完全相同的5個球,編號分別為1,2,3,4,5,甲、乙兩人玩一種游戲:甲先摸一個球,記下編號,放回后乙再摸一個球,記下編號.如果兩個編號的和為偶數(shù)就算甲勝,否則算乙勝.
(1)求甲勝且編號的和為6的事件發(fā)生的概率;
(2)這種游戲規(guī)則公平嗎?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)函數(shù)的圖象與的圖象無公共點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)是否存在實(shí)數(shù),使得對任意的,都有函數(shù)的圖象在的圖象的下方?若存在,請求出整數(shù)的最大值;若不存在,請說理由.
(參考數(shù)據(jù):,,).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com