【題目】已知函數(shù) .若存在實數(shù)k使得函數(shù)f(x)的值域為[﹣1,1],則實數(shù)a的取值范圍是(
A.
B.
C.[1,3]
D.[2,3]

【答案】B
【解析】解:∵y=log2(2﹣x)的定義域為(﹣∞,2),
∴0<k≤2,
當(dāng)x∈[0,k)時,log2(2﹣k)<log2(2﹣x)≤1;
又∵log2(2﹣k)≥﹣1,
∴0<k≤ ,
∵y=x3﹣3x2+3的導(dǎo)數(shù)y′=3x2﹣6x=3x(x﹣2),
且y|x=2=﹣1,
∴a≥2且f(a)=a3﹣3a2+3≤1,
解得,2≤a≤1+
故選B.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的值域的相關(guān)知識,掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實質(zhì)是相同的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ae2x+(a﹣2)ex﹣x.(12分)
(1)討論f(x)的單調(diào)性;
(2)若f(x)有兩個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線已知的頂點,若其歐拉線的方程為,則頂點的坐標(biāo)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海水養(yǎng)殖場進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機(jī)抽取了100 個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如圖:

(Ⅰ)設(shè)兩種養(yǎng)殖方法的箱產(chǎn)量相互獨(dú)立,記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50kg,新養(yǎng)殖法的箱產(chǎn)量不低于50kg”,估計A的概率;
(Ⅱ)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):

箱產(chǎn)量<50kg

箱產(chǎn)量≥50kg

舊養(yǎng)殖法

新養(yǎng)殖法

(Ⅲ)根據(jù)箱產(chǎn)量的頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計值(精確到0.01).
附:

P(K2≥k)

0.050

0.010

0.001

K

3.841

6.635

10.828

K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρcosθ=4.
(Ⅰ)M為曲線C1上的動點,點P在線段OM上,且滿足|OM||OP|=16,求點P的軌跡C2的直角坐標(biāo)方程;
(Ⅱ)設(shè)點A的極坐標(biāo)為(2, ),點B在曲線C2上,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sin(ωx﹣ )+b(ω>0),且函數(shù)圖象的對稱中心到對稱軸的最小距離為 ,當(dāng)x∈[0, ]時,f(x)的最大值為1.
(1)求函數(shù)f(x)的解析式;
(2)將函數(shù)f(x)的圖象向右平移 個單位長度得到函數(shù)g(x)圖象,若g(x)﹣3≤m≤g(x)+3在x∈[0, ]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中,側(cè)棱與底面垂直,,,點的中點.

(1)求證:平面

(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分別拋擲兩顆骰子各一次,觀察向上的點數(shù),求:

(1)兩數(shù)之和為5的概率;

(2)以第一次向上的點數(shù)為橫坐標(biāo),第二次向上的點數(shù)為縱坐標(biāo)的點在圓內(nèi)部的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,過底面是矩形的四棱錐FABCD的頂點FEFAB,使AB=2EF,且平面ABFE⊥平面ABCD,若點GCD上且滿足DG=G.

求證:(1)FG∥平面AED;

(2)平面DAF⊥平面BAF.

查看答案和解析>>

同步練習(xí)冊答案