(1)證明:∵a
1=1,3tS
n-(2t+3)S
n-1=3t(n≥2,n∈N
*)①
∴3tS
n-1-(2t+3)S
n-2=3t(n≥3,n∈N*)②
①②兩式相減得
又n=2時,
∴a
n是以1為首項,
為公比的等比數(shù)列.
(2)解:∵
,∴
,∴
∴b
n是以1為首項,
為公差的等差數(shù)列,∴
∴b
1b
2-b
2b
3+b
3b
4-b
4b
5+…+b
2n-1b
2n-b
2nb
2n+1(n∈N*)
=b
2(b
1-b
3)+b
4(b
3-b
4)+…+b
2n(b
2n-1-b
2n+1)
=
.
分析:(1)因為a
n=S
n-S
n-1(n≥2,n∈N
*),所以在3tS
n-(2t+3)S
n-1=3t的基礎上,用n-1替換n構造與它類似的關系式;然后利用作差法求出a
n與a
n-1的關系式,進而可整理為等比數(shù)列形式;但不要忘掉未含項的檢驗.
(2)由(1)知{a
n}的公比f(t),又b
n=f(
),則可找到b
n與b
n-1的關系,進而可整理為等差數(shù)列形式;則由等差數(shù)列通項公式可求b
n;代數(shù)式b
1b
2-b
2b
3+b
3b
4-b
4b
5+…+b
2n-1b
2n-b
2nb
2n+1的求值,可利用分組的方法,把它轉化到等差數(shù)列的性質與前n項和公式上去,則問題解決.
點評:若數(shù)列{a
n}的前n項和為S
n,則a
n=S
n-S
n-1(n≥2,n∈N
*)是實現(xiàn)前n項和S
n向通項a
n轉化的橋梁與紐帶,進而可結合等差數(shù)列、等比數(shù)列的定義與性質解決問題.