(本題滿分15分)已知函數(shù)
(1)求函數(shù)的圖像在點(diǎn)處的切線方程;
(2)若,且對任意恒成立,求的最大值;

(1); (2)整數(shù)的最大值是3.

解析試題分析:(1)解:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/17/f/d9ykg.png" style="vertical-align:middle;" />,所以,
函數(shù)的圖像在點(diǎn)處的切線方程;…………5分
(2)解:由(1)知,,所以對任意恒成立,即對任意恒成立.…………7分
,則,……………………8分
,則
所以函數(shù)上單調(diào)遞增.………………………9分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/19/b/fn4gy1.png" style="vertical-align:middle;" />,所以方程上存在唯一實(shí)根,且滿足
當(dāng),即,當(dāng),即,…13分
所以函數(shù)上單調(diào)遞減,在上單調(diào)遞增.
所以.…………14分
所以.故整數(shù)的最大值是3.………………………15分
考點(diǎn):本題主要考查導(dǎo)數(shù)的幾何意義,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及極值。
點(diǎn)評:典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問題,像涉及恒成立問題,往往通過研究函數(shù)的最值達(dá)到解題目的。涉及對數(shù)函數(shù),要特別注意函數(shù)的定義域。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(I)若曲線與曲線在它們的交點(diǎn)處具有公共切線,求的值;
(II)當(dāng)時(shí),若函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),求的取值范圍;
(III)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù),且
(1)求函數(shù)的解析式.
(2)若在區(qū)間上恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題14分)已知函數(shù)處取得極值,且在處的切線的斜率為1。
(Ⅰ)求的值及的單調(diào)減區(qū)間;
(Ⅱ)設(shè)>0,>0,,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù).(
(1)若函數(shù)有三個(gè)零點(diǎn),且,求函數(shù) 的單調(diào)區(qū)間;
(2)若,試問:導(dǎo)函數(shù)在區(qū)間(0,2)內(nèi)是否有零點(diǎn),并說明理由.
(3)在(Ⅱ)的條件下,若導(dǎo)函數(shù)的兩個(gè)零點(diǎn)之間的距離不小于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)
已知函數(shù),的導(dǎo)函數(shù)(為自然對數(shù)的底數(shù))
(Ⅰ)解關(guān)于的不等式:
(Ⅱ)若有兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(Ⅰ)若函數(shù)處取得極值,求的值;
(Ⅱ)若,函數(shù)上是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分12分)已知函數(shù).(Ⅰ) 求上的最小值;(Ⅱ) 若存在是常數(shù),=2.71828)使不等式成立,求實(shí)數(shù)的取值范圍;
(Ⅲ) 證明對一切都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,其中是自然常數(shù),
(Ⅰ)當(dāng)時(shí), 研究的單調(diào)性與極值;
(Ⅱ)在(Ⅰ)的條件下,求證:;

查看答案和解析>>

同步練習(xí)冊答案